Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:51:06.105Z Has data issue: false hasContentIssue false

Structural Changes in Amorphous Silicon Annealed at Low Temperatures

Published online by Cambridge University Press:  17 March 2011

Branko Pivac
Affiliation:
Rudjer Bošković Institute, P.O. Box 180, HR-10000 Zagreb, Croatia
Pavo Dubček
Affiliation:
Rudjer Bošković Institute, P.O. Box 180, HR-10000 Zagreb, Croatia Sinchrotrone Trieste, SS 14km 163.5, I-34012 Basovizza (TS), Italy
Ognjen Milat
Affiliation:
Institute of Physics, P.O. Box 1010, HR-10000 Zagreb, Croatia
Ivan Zulim
Affiliation:
Faculty of Electrical and Mechanical Engineering, and Naval Architecture, University of Split, R. Bosškovića b.b. HR-21000 Split, Croatia
Get access

Abstract

The hydrogen dilution in the course of production of amorphous silicon (a-Si) influences its structural properties, which affect significantly light-induced degradation. We used FTIR, X-ray reflectivity and GISAXS analysis to monitor the structural changes occurring during the low temperature annealing of undoped a-Si:H films. FTIR results show that upon annealing at very low temperatures, hydrogen is moved from its positions (voids) where it was accumulated unbonded to silicon and is subsequently trapped at dangling bonds, enhancing disorder. X-ray reflectivity and GISAXS measurements confirmed the enhancement of the void size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31 (1977) 292.Google Scholar
2. Street, R.A., Physica B, 170 (1991) 69.10.1016/0921-4526(91)90108-QGoogle Scholar
3. Yiping, Z., Dianlin, Z., Guanglin, K., Guangqin, P., and Xianbo, L., Phys. Rev. Lett., 74 (1995) 558.Google Scholar
4. Terakawa, A., Shima, M., Sayama, K., Tarui, H., Nishiwaki, H., and Tsuda, S., Jpn. J. Appl. Phys. 34 (1995) 1741.Google Scholar
5. Shima, M., Terakawa, A., Isomura, M., and Tsuda, S., Jpn. J. Appl. Phys. 36 (1997) 2044.10.1143/JJAP.36.2044Google Scholar
6. Okamoto, S., Hishikawa, Y., and Tsuda, S., Jpn. J. Appl. Phys. 35 (1996) 26.Google Scholar
7. Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70 (1997) 2975.10.1063/1.118761Google Scholar
8. Tsu, D.V., Chao, B.S., Ovshinsky, S.R., Guha, S., and Yang, J., Appl. Phys. Lett. 66 (1995) 3609.Google Scholar
9. Guha, S., Yang, J., Williamson, D.L., Lubianker, Y., Cohen, J.D., and Mahan, A.H., Appl. Phys. Lett. 74 (1999) 1860.10.1063/1.123693Google Scholar
10. Mahan, A.H., Yang, J., Guha, S., and Williamson, D.L., Phys. Rev. B, 61 (2000) 1677.Google Scholar
11. Mahan, A.H., Yang, J., Guha, S., and Williamson, D.L., Mat. Res. Soc. Symp. Proc. 557 (1999) 269.Google Scholar
12. Venaček, M., Fric, J., Poruba, A., Mahan, A.H., Crandall, R.S., J. Non-Cryst. Solids, 198–200 (1996) 478 Google Scholar
13. Pivac, B., Kovačević, I., Zulim, I., and Gradišnik, V., Proc IEEE PVBSC Meeting, Anchorage 2000, in press.Google Scholar
14. Zellama, K., Chahed, L., Sladek, P., Thèye, M.L., Bardeleben, J.H. von, Cabarrocas, P. Roca I, Phys. Rev. B, 53 (1996) 3804.10.1103/PhysRevB.53.3804Google Scholar
15. Hamley, I.W. and Pedersen, J.S., J. Appl. Cryst., 27 (1994) 29.Google Scholar
16. Sinha, S.K., Sirota, E.B., Garoff, S., Phys Rev B, 38 (1988) 2297.10.1103/PhysRevB.38.2297Google Scholar