Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:41:37.806Z Has data issue: false hasContentIssue false

Structural and Magnetic Properties of Epitaxially Grown Fcc Fe/Cu(100) and Fe/CaF2/Si(111)

Published online by Cambridge University Press:  21 February 2011

M.R. Scheinfein
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
S.D. Healy
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
K.R. Heim
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
Z.J. Yang
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
J.S. Drucker
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1504
G.G. Hembree
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287-1504
Get access

Abstract

We have used nanometer spatial resolution secondary electron and Auger electron imaging in an ultra-high vacuum scanning transmission electron microscope to characterize microstructure in ultrathin films of Fe/Cu(100) grown at room temperature and Fe/CaF2/Si(111) grown at room temperature and 150 C. Thin film microstructure was correlated in situ with magnetic properties by using the surface magneto-optic Kerr effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mermin, N.D., Wagner, H., Phys. Rev. Lett. 12, 1133 (1966).Google Scholar
2. Schwartzendrubber, L.J., Binary Phase Diagrams: vol. 2, ( Publisher, 1990).Google Scholar
3. Mryasov, O.N., Liechtenstein, A.I., Sandratskii, L.M., Gubanov, V.A., J. Phys.: Condens. Matter 3, 7683 (1991); G.L. Krasko, G.B. Olson, Phys. Rev. B40, 11536 (1989); T. Kraft, M. Methfessel, M. van Schilfgaarde, M. Scheffler, Phy. Rev. B47, 9862 (1993); V.L. Moruzzi, P.M. Marcus, K. Schwarz, P. Mohn, Phys. B34, 1784 (1986).Google Scholar
4. Liu, C., Moog, E.R., Bader, S.D., Phys. Rev. Lett. 60, 2422 (1988); C. Liu, E.R. Moog, S.D. Bader, J. Appl. Phys. 64, 5325 (1988); C. Liu, S.D. Bader, J. Vac.Sci. Technol. A8, 2727 (1990); S.D. Bader, Proc. IEEE 78, 909 (1990).CrossRefGoogle Scholar
5. Bennett, W.R., Schwarzacher, W., Egelhoff, W.F. Jr., Phys. Rev. Lett. 58,3169 (1990).Google Scholar
6. Pescia, D., Stampanoni, M., Bona, G.L., Vaterlaus, A., Willis, R.F., Meier, F., Phys. Rev. Lett. 58, 2126 (1987).Google Scholar
7. Pappas, D.P., Kamper, K.-P., Hopster, H., Phys. Rev. Lett. 64, 3179 (1990).CrossRefGoogle Scholar
8. Pappas, D.P., Kamper, K.-P., Miller, B.P., Hopster, H., Fowler, D.E., Luntz, A.C., Brundle, C.R., Shen, Z.-X., J. Appl. Phys. 69, 5209 (1991).Google Scholar
9. Macedo, W.A.A., Keune, W., Phys. Rev. Lett. 61, 475 (1988).Google Scholar
10 Himpsel, F.J., Phys. Rev. Lett. 67, 2363 (1991).Google Scholar
11 Allenspach, R., Bishof, A., Phys. Rev. Lett. 69, 3385 (1992).Google Scholar
12. Xhonneux, P., Courtens, E., Phys. Rev. B46, 5561 (1992).Google Scholar
13. Thomassen, J., May, F., Feldmann, B., Wuttig, M., Ibach, H., Phys. Rev. Lett. 69, 3831 (1992).Google Scholar
14. Jesser, W.A., Mathews, J.W., Phil. Mag. 15, 1097 (1967); Phil. Mag. 12, 461 (1968).Google Scholar
15 Chambers, S.A., Wagener, T.J., Weaver, J.H., Phys. Rev. B36, 8982 (1987).Google Scholar
16 Steigerwald, D.A., Egelhoff, W.F. Jr, Surf. Sci. 192, L887 (1987); D.A.Steigerwald, F. Jacob, W.F. Egelhoff Jr., Surf. Sci. 202, 472 (1988).Google Scholar
17. Glatzel, H., Farster, Th., Scherzer, B.M.U., Dose, V., Surf. Sci. 254, 58 (1991).Google Scholar
18. Brodde, A., Neddermeyer, H., Ultramicr. 42–44, 556 (1991).Google Scholar
19 Magnan, H., Chandesris, D., Villette, B., Heckmann, D., Lecante, J., Phys. Rev. Lett. 67, 859 (1991).CrossRefGoogle Scholar
20. Hembree, G., Drucker, J., Hong, L., Krishnamurthy, M., and Venables, J. A., Appl. Phys. Lett. 58, 1991.Google Scholar
21. Hembree, G. G. and Venables, J. A., Ultramicroscopy 47, 109 (1992); J. Liu, G. G. Hembree, G. E. Spinnler, and J. A. Venables, Surface Science Lett. 262, L111 (1992); J. Liu, G. G. Hembree, G. E. Spinnler, and J. A. Venables, Catalysis Letters 15, 133 (1992).Google Scholar
22. Krishnamurthy, M., Drucker, J., and Venables, J., J. Appl. Phys. 69, 6461 (1991).Google Scholar
23. Drucker, J., Krishnamurthy, M., and Hembree, G., Ultramicroscopy 35, 323 (1991).Google Scholar
24. Hembree, G. G., Crozier, P. A., Drucker, J. S., Krishnamurthy, M., Venables, J. A., and Cowley, J. M., Ultramicroscopy 31, 111 (1989).Google Scholar
25. Venables, J. A., Cowley, J. M., and Harrach, H. S. von, Inst. Phys. Conf. Ser. 90, 85 (1987).Google Scholar
26. Kruit, P. and Venables, J. A., Ultramicroscopy 25, 183 (1988). P. Kruit, Adv. Opt. Electron Microsc. 12, 93 (1991).Google Scholar
27. Scheinfein, M. R., unpublished.Google Scholar
28. Crystals were custom fabricated by Straughn, Virgil, Monocrystals Inc. Cleveland, OH.Google Scholar
20. Drucker, J., J. Appl. Phys. 70, 2806 (1991).Google Scholar
30. Venables, J. A., Batchelor, D. R., Hanbiicken, M., Harland, C. J., and Jones, G. W., Phil. Trans. R. Soc. Lond. A 318, 243 (1986).Google Scholar
31. Gronlund, F. and Nielsen, P. E. H., Surface Science 30, 388 (1972).Google Scholar
32. Goetze, G. W., Boerio, A. H., and Green, M., J. Appl. Phys. 35, 482 (1964); G. W. Goetze, Adv. Electron. Electron Phys. 22, 219 (1968).Google Scholar
33. Reimer, L., Scanning Electron Microscopy, (Springer-Verlag, Berlin, 1985).Google Scholar
34. Bauer, E., Z. Krist. 110, 372 (1958).Google Scholar
35. Boer, F. R. de, Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals Transition MetalAlloys (North-Holland Elsevier Science Publishers,NY, 1988).Google Scholar
36. Gilman, J. J., J. Appl. Phys. 31, 2208 (1960). G. C. Benson and T. A. Claxton, Can. J.Phys. 41, 1287 (1963). P. W. Tasker, J. Phys. (Paris) 41, C6-488 (1980).Google Scholar
37. Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
38. Harrison, T. R., Mankiewich, P. M., and Dayem, A. H., Appl. Phys. Lett. 41, 1102 (1982). P. M. Mankiewich, H. G. Craighead, T. R. Harrison, and A. H. Dayem, Appl. Phys. Lett. 44, 468 (1984). M. Scheinfein and M. Isaacson, J. Vac. Sci. Technol. B 4, 326 (1986).Google Scholar
39. Private communication with Loretto, D.: Bright field transmission electron microscopy performed on the CaF2/Si(111) samples revealed a non uniform distribution of line defects at the CaF2-Si(111) interface. This is an indication that stress relief occurred during the CaF2 growth. In comparison, an unrelaxed film will display a parallel array of line defects corresponding to the original steps on the Si(111) surface.Google Scholar
40. Kittel, C., Introduction to Solid State Physics, fourth edition (John Wiley & Sons, 1971), page 259.Google Scholar
41. Chien, C. L., J. Appl. Phys. 69, 5267 (1991). A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992). A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, D. Rao, A. Starr, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas, J. Appl. Phys. 73, 5320 (1993).Google Scholar