Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T05:00:52.175Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Zr-Ti-Cu-Ni-Be Alloys

Published online by Cambridge University Press:  17 March 2011

Jörg F. Löffler
Affiliation:
W. M. Keck Laboratory, California Institute of Technology, Pasadena, California 91125, U.S.A.
X.-P. Tang
Affiliation:
Department of Physics and Astronomy and Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3255, U.S.A.
Yue Wu
Affiliation:
Department of Physics and Astronomy and Curriculum in Applied and Materials Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3255, U.S.A.
William L. Johnsona
Affiliation:
W. M. Keck Laboratory, California Institute of Technology, Pasadena, California 91125, U.S.A.
Get access

Abstract

We present crystallization studies on Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) and on other alloys, where the (Zr,Ti) and (Cu,Be) contents, along the line in composition space connecting Vit1 and Zr46.8Ti8.2Cu7.5Ni10Be27.5 (Vit4), were varied. Results from x-ray diffraction (XRD), small-angle neutron scattering (SANS) and differential scanning calorimetry (DSC) are combined to describe the crystallization behavior of these alloys at deep undercooling. SANS gives evidence for decomposition and the formation of nanometer sized crystals below a critical temperature Tc, which varies drastically as a function of composition. When Tc intersects with the glass transition temperature Tg, changes in the crystallization behavior are observed by DSC and XRD. At annealing temperatures near Tg, XRD resolves quasicrystalline phases for all alloy compositions from Vit1 to Vit4. From 9Be nuclear magnetic resonance (NMR) experiments performed on Vit1 upon annealing, we obtain information about the electronic structure and volume fraction of Be containing crystalline and quasicrystalline phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans. JIM, 32, 1005 (1991).Google Scholar
2. Peker, A. and Johnson, W. L, Appl. Phys. Lett., 63, 2342 (1993).Google Scholar
3. Schneider, S., Geyer, U., Thiyagarajan, P., and Johnson, W. L., Mater. Sci. Forum, 235–238, 337 (1997).Google Scholar
4. Löffler, J. F. and Johnson, W. L., Appl. Phys. Lett., 76, 3394 (2000).Google Scholar
5. Löffler, J. F., Thiyagarajan, P., and Johnson, W. L., J. Appl. Crystallogr., 33, 500 (2000).Google Scholar
6. Löffler, J. F., Bossuyt, S., Glade, S. C., Johnson, W. L., Wagner, W., and Thiyagarajan, P., Appl. Phys. Lett., 77, 525 (2000).Google Scholar
7. Kündig, A. A., Löffler, J. F., and Johnson, W. L., this volume.Google Scholar
8. Glade, S. C., Löffler, J. F., Bossuyt, S., Johnson, W. L., and Miller, M. K., J. Appl. Phys., 89, 1573 (2001).Google Scholar
9. Hays, C. C., Kim, C. P., and Johnson, W. L., Appl. Phys. Lett., 75, 1089 (1999).Google Scholar
10. Wanderka, N., Macht, M.-P., Seidel, M., Mechler, S., Stahl, K., and Jiang, J. Z., Appl. Phys. Lett., 77, 3935 (2000).Google Scholar
11. TAPP database, version 2.2, E S Micoware, Inc. (Hamilton, OH, 1994); V. V. Molokanov, V. N. Chebotnikov, and Y. K. Kovneristyi, Inorg. Mater., 25, 46 (1989).Google Scholar
12. Tang, X.-P., Busch, R., Johnson, W. L., and Wu, Y., Phys. Rev. Lett., 81, 5358 (1998).Google Scholar
13. Winter, J., Magnetic Resonance in Metals (Clarendon, Oxford, 1971).Google Scholar
14. Tang, X.-P., Löffler, J. F., Johnson, W. L., and Wu, Y., J. Non-Cryst. Solids (submitted).Google Scholar
15. Löffler, J. F. and Johnson, W. L., Scr. Mater., to appear in 2001.Google Scholar