Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:40:27.395Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of Line Defects in GaN

Published online by Cambridge University Press:  03 September 2012

Joachim Elsner
Affiliation:
Fachbereich Physik, Universität Paderborn, D-33095 Paderborn, Germany Semiconductor Physics Group, University of Exeter, Exeter, EX4 4QL, UK
Alexander Th. Blumenau
Affiliation:
Fachbereich Physik, Universität Paderborn, D-33095 Paderborn, Germany Semiconductor Physics Group, University of Exeter, Exeter, EX4 4QL, UK
Thomas Frauenheim
Affiliation:
Fachbereich Physik, Universität Paderborn, D-33095 Paderborn, Germany
Robert Jones
Affiliation:
Semiconductor Physics Group, University of Exeter, Exeter, EX4 4QL, UK
Malcolm I. Heggie
Affiliation:
CPES, University of Sussex, Falmer, Brighton, BN1 9QJ, UK
Get access

Abstract

We present density-functional theory based studies for several types of line defects in both hexagonal and cubic GaN. {10-10} type surfaces play an important role in hexagonal GaN since similar configurations occur at open-core screw dislocations and nanopipes as well as at the core of threading edge dislocations. Except for full-core screw dislocations which possess heavily strained bonds all investigated stoichiometric extended defects in hexagonal GaN do not induce deep acceptor states in the band-gap and thus cannot be responsible for the yellow luminescence. However, electrically active point defects in particular gallium vacancies and oxygen related defect complexes are found to be trapped at the stress field of the dislocations. Preliminary calculations for cubic GaN find the ideal stoichiometric 60°-dislocations to be electrically active. As in hexagonal material, vacancies and impurities like oxygen are likely to be trapped at the dislocation core.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, Springer Verlag, Berlin 1997.Google Scholar
2. Yang, H., Zheng, L.X., Li, J.B., Wang, X.J., Xu, D.P., Wang, Y.T. and Hu, X.W., Appl. Phys. Lett., 74, 2498 (1999).Google Scholar
3. As, D.J. and Lischka, K., priv. comm. (1999).Google Scholar
4. Look, D.C. and Sizelove, J.R., Phys. Rev. Lett., 82, 1237 (1999).Google Scholar
5. Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, Th., Heggie, M.I., Öberg, S. and Briddon, P.R., Phys. Rev. Lett., 79, 3672 (1997).Google Scholar
6. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Shuhai, S. and Seifert, G., Phys. Rev., B 58, 7260 (1998).Google Scholar
7. Elsner, J., Jones, R., Haugk, M., Frauenheim, Th., Heggie, M.I., Öberg, S. and Briddon, P. R., Phys. Rev., B 58, 12571 (1998).Google Scholar
8. Ning, X.J., Chien, F.R. and Pirouz, P., J. Mater. Res., 11, 580 (1996).Google Scholar
9. Xin, Y., Pennycook, S. J., Browning, N. D., Nelist, P. D., Sivananthan, S., Omnes, F., Beaumont, B., Faurie, J-P. and Gibart, P., Appl. Phys. Lett., 72, 2680 (1998).Google Scholar
10. Rosner, S.J., Carr, E.C., Ludowise, M.J., Girlami, G. and Erikson, H.I., Appl. Phys. Lett., 70, 420 (1997).Google Scholar
11. Liliental-Weber, Z., priv. comm. at the EDS (1998).Google Scholar
12. Frank, F.C., Acta. Crys., 4, 497 (1951).Google Scholar
13. Liliental-Weber, Z., Chen, Y., Ruvimov, S. and Washburn, J., Phys. Rev. Lett., 79, 2835 (1997).Google Scholar
14. Wetzel, C., Suski, T, Ager, J.W., Weber, E.R., Haller, E.E., Fischer, S., Meyer, B.K., Molnar, R.J. and Perlin, P., Phys. Rev. Lett., 78, 3923 (1997).Google Scholar
15. Neugebauer, J. and Walle, C.G. Van de, Festkörperprobleme, 35, 25 (1996).Google Scholar
16. Elsner, J., Jones, R., Haugk, M., Gutierrez, R., Frauenheim, Th., Heggie, M.I., Öberg, S. and Briddon, P.R., Appl. Phys. Lett., 73, 3530 (1998).Google Scholar
17. Neugebauer, J. and Walle, C.G. Van de, Appl. Phys. Lett., 69, 503 (1996).Google Scholar
18. Bougulawski, P., Briggs, E.L. and Bernholc, J., Phys. Rev., B 51, R17255 (1995).Google Scholar
19. Wright, A.F. and Gossner, U., Appl. Phys. Lett., 73, 2751 (1998).Google Scholar
20. Leung, K., Wright, A.F. and Stechel, E.B., Appl. Phys. Lett., 74, 2495 (1999).Google Scholar
21. Xin, Y., James, E.M., Arslan, I., Sivananthan, S., Browning, N.D., Pennycook, S.J., Omnes, F., Beaumont, B., Faurie, J-P. and Gibart, P., submitted to Appl. Phys. Lett. 1999 Google Scholar
22. Kaiser, S., priv. comm. (1999).Google Scholar