Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:25:03.124Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of AlN, GaN And InN, and Band Offsets at AlN/GaN (1010) and (0001) Interfaces

Published online by Cambridge University Press:  21 February 2011

A. Satta
Affiliation:
INFM-Dipartimento di Scienze Fisiche, Università di Cagliari, 1-09124 Cagliari, Italy
Vincenzo Fiorentini
Affiliation:
INFM-Dipartimento di Scienze Fisiche, Università di Cagliari, 1-09124 Cagliari, Italy
Andrea Bosin
Affiliation:
INFM-Dipartimento di Scienze Fisiche, Università di Cagliari, 1-09124 Cagliari, Italy
F. Meloni
Affiliation:
INFM-Dipartimento di Scienze Fisiche, Università di Cagliari, 1-09124 Cagliari, Italy
David Vanderbilt
Affiliation:
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
Get access

Abstract

Ab initio local-density-functional calculations are presented for bulk A1N, GaN, and InN in the wurtzite, zincblende, and rocksalt structures. Structural transition pressures and deformation potentials of electronic gaps are investigated. In addition, we study the band offset at the polar (0001) and non-polar (1010) AIN/GaN interfaces. Within AIN-on-GaN epitaxial conditions, we obtain valence-band offset values close to 0.7 eV for both interfaces. From the macroscopic field appearing along the growth direction of the polar interface (tentatively attributed to AIN macroscopic polarization), an estimate of the macroscopic dielectric constant of GaN is extracted. All calculations employed conjugate-gradient total-energy minimizations, ultrasoft pseudopotentials, and plane waves at 25 Ryd cutoff.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Davis, R. F., Proceedings IEEE 79, 702 (1991).Google Scholar
2 See e.g. Baldereschi, A.. Baroni, S., and Resta, R., Phys. Rev. Lett. 61, 734 (1988); M. Peressi et al., Phys. Rev. B 48, 12047 (1993).Google Scholar
3 Cappellini, G. et al. , these Proceedings; and to be published.Google Scholar
4 King-Smith, R. D. and Vanderbilt, D., Phys. Rev. B 49, 5828 (1994).Google Scholar
5 Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
6 Dreizler, R. and Gross, E. K. U., Density functional theory (Springer, Berlin, 1990). Exchange-correlation energy by D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) as parametrized by J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).Google Scholar
7 Fiorentini, V., Methfessel, M., and Scheffler, M., Phys. Rev. B 47, 13353 (1993); V. Fiorentini et al., in The Physics of Semiconductors, D. J. Lockwood ed., (World Scientific, Singapore 1995), p.137. See also S.-H. Wei and A. Zunger, Phys. Rev. B 37, 8958 (1988) (on II-VI materials).Google Scholar
8 Bosin, A. et al. , these Proceedings, and to be published.Google Scholar
9 Gorczyca, I. and Christensen, N., Phys. Rev. B 50, 4397 (1994).Google Scholar
10 Fiorentini, V., Phys. Rev. B 46, 2086 (1992).Google Scholar
11 Fiorentini, V., to be published.Google Scholar
12 Lambrecht, W. L. et al. , J. Vac. Sci. Technol. B 12, 2470 (1994); J. Baur et al., Appl. Phys. Lett. 65, 2211 (1994); G. Martin et al., ibid., 610.Google Scholar
13 Dal Corso, A., Posternak, M., Resta, R., and Baldereschi, A., Phys. Rev. B 50, 10715 (1994).Google Scholar
14 Posternak, M., Baldereschi, A., Catellani, A., and Resta, R., Phys. Rev. Lett. 64, 1777 (1990).Google Scholar