Published online by Cambridge University Press: 16 February 2011
Crystal engineering has been invoked to design structural analogues of two prototypal SHG active solids, p-nitroaniline (pNA) and potassium dihydrogenphosphate (KDP). pNA exists as linear polar strands because of head-to-tail hydrogen bonding between adjacent molecules whereas KDP is a self-assembled hydrogen bonded diamondoid network that becomes polar when the hydrogen bonds align. We detail preparation and crystallographic characterization of two classes of multicomponent solid, organic cation hydrogen sulfates and cocrystals of the cubane cluster [M (CO)3(μ3-OH)]4, which structurally mimic pNA and KDP, respectively. Several of the Multi-component solids are polar and they represent a generic approach to designing new polar materials since one component can be changed without altering the basic architecture within the crystal.