Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:38:09.110Z Has data issue: false hasContentIssue false

Strain-Induced Phononic and Structural Response in Wurtzite-Gallium Nitride Nanowires

Published online by Cambridge University Press:  31 May 2013

Jarvis Loh*
Affiliation:
CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553
Dominique Baillargeat
Affiliation:
CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553
Get access

Abstract

Gallium nitride (GaN) nanowires exist in a myriad of cross-sectional shapes. In this study, a series of classical molecular dynamics simulations is performed to investigate the strain-phononics-structure relationship in rectangular and triangular wurtzite (Wz) - GaN nanowires. The thermal conductivity of the nanowires is linearly dependent on the uniaxial strain in both compressive and tensile regimes, and shows no significant dissimilitude for the same amount of strain exerted on the two types of nanowire. This is coherent with an analytical approach using the Boltzmann transport theory. However, the thermomechanical behaviour at the vertex regions shows palpable differences between the two subfamilies, relative to the non-vertex faceted regions, as the structural morphology is most disparate at the vertices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kawamura, T., Kangawa, Y., and Kakimoto, K., J. Crystal Growth 284, 197 (2005).CrossRefGoogle Scholar
Guthy, C., Nam, C.-Y., and Fischer, J.E., J. Appl. Phys. 103, 064319 (2008).CrossRefGoogle Scholar
Ramos, M., Ortiz-Jordan, L., Hurtado-Macias, A., Flores, S., Elizalde-Galindo, J.T., Rocha, C., Torres, B., Zarei-Chaleshtori, M., and Chianelli, R.R., Materials 6, 198 (2013).CrossRefGoogle Scholar
Seo, H.W., Bae, S.Y., Park, J., Yang, H., and Park, K.S., J. Chem. Phys. 116, 9492 (2002).CrossRefGoogle Scholar
Bhowmick, S. and Shenoy, V.B., J. Chem. Phys. 125, 164513 (2006).CrossRefGoogle Scholar
Jung, K., Cho, M., and Zhou, M., Appl. Phys. Lett. 98, 041909 (2011).CrossRefGoogle Scholar
Jindal, V. and Shahedipour-Sandvik, F., J. Appl. Phys. 106, 083115 (2009).CrossRefGoogle Scholar
Pokatilov, E.P., Nika, D.L., and Balandin, A.A., Phys. Rev. B 72, 113311 (2005).CrossRefGoogle Scholar
Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y., Goldberger, J., and Yang, P., Nano Lett. 3, 1063 (2003).CrossRefGoogle Scholar
Akasaka, T., Kobayashi, Y., Ando, S., Kobayashi, N., and Kumagai, M., J. Cryst. Growth 189, 72 (1998).CrossRefGoogle Scholar
Cahn, J.W. and Carter, W.C., Metall. Mater. Trans. A 27, 1431 (1996).CrossRefGoogle Scholar
Brenner, D.W., Phys. Rev. B 42, 9458 (1990).CrossRefGoogle Scholar
Nord, J., Albe, K., Erhart, P., and Nordlund, K., J. Phys. : Condens. Matter 15, 5649 (2003).Google Scholar
Nosé, S., J. Chem. Phys. 81, 511 (1984).CrossRefGoogle Scholar
Hoover, W.G., Phys. Rev. A 31, 1695 (1985).CrossRefGoogle Scholar
Born, M., and Huang, K., Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, United Kingdom, 1954).Google Scholar
Fermi, E., Nuclear Physics (University of Chicago Press, Chicago, USA, 1950).Google Scholar
Ziman, J., Electrons and Phonons (Cambridge University Press, Cambridge, England, 1960).Google Scholar
Ward, A., Broido, D.A., Stewart, D.A., and Deinzer, G., Phys. Rev. B 80, 125203 (2009).CrossRefGoogle Scholar
Omini, M. and Sparavigna, A., Phys. Rev. B 53, 9064 (1996).CrossRefGoogle Scholar
Sparavigna, A., Phys. Rev. B 65, 064305 (2002).CrossRefGoogle Scholar
Sparavigna, A., Phys. Rev. B 66, 174301 (2002).CrossRefGoogle Scholar
Broido, D.A., Ward, A., and Mingo, N., Phys. Rev. B 72, 014308 (2005).CrossRefGoogle Scholar
Broido, D.A., Malorny, M., Birner, G., Mingo, N., and Stewart, D.A., Appl. Phys. Lett. 91, 231922 (2007).CrossRefGoogle Scholar
Li, X., Maute, K., Dunn, M.L., and Yang, R., Phys. Rev. B 81, 245318 (2010).CrossRefGoogle Scholar
Sun, C.Q., Prog. Solid State Chem. 35, 159 (2007).CrossRefGoogle Scholar
Pauling, L., J. Am. Chem. Soc. 69, 542 (1947).CrossRefGoogle Scholar
Goldschmidt, V.M., Ber Deut Chem Ges 60, 1270 (1927).CrossRefGoogle Scholar