Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:40:07.475Z Has data issue: false hasContentIssue false

Strain Relief and Defect Formation in High Dose Oxygen Implanted Silicon

Published online by Cambridge University Press:  28 February 2011

D. Venables
Affiliation:
Department of Materials Science and Eng., University of Florida, Gainesville, FL 32611
K. S. Jones
Affiliation:
Department of Materials Science and Eng., University of Florida, Gainesville, FL 32611
F. Namavar
Affiliation:
SPIRE Corporation, Patriots Park, Bedford, MA 01730
J. M. Manke
Affiliation:
SPIRE Corporation, Patriots Park, Bedford, MA 01730
Get access

Abstract

Lattice strain and defect formation in oxygen implanted silicon (SIMOX) were investigated as a function of dose and annealing conditions by high resolution x-ray diffraction and transmission electron microscopy. X-ray rocking curves revealed the presence of two distinct strained layers. Self-interstitial clusters and oxygen interstitials gave rise to a buried strain layer in unidirectional tension centered around the projected range at low doses (l×1016 and 3×1016 cm−2. As the dose was increased to 1×1017 and 3×1017 cm−2 a supersaturation of vacancies near the surface produced a second strain layer with a unidirectional lattice contraction at the wafer surface. Annealing at 900°C, 0.5 hr. reduced this surface strain as the defects coarsened into observable cavities. The development of cavities upon annealing was used in a sequential implantation and low temperature annealing process to produce low threading dislocation density SIMOX. Possible mechanisms for threading dislocation formation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Homma, Y., Oshima, M., and Hayashi, T., Jap. J. Appl. Phys. 21, 890 (1982).Google Scholar
2. Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63, 4933 (1988).CrossRefGoogle Scholar
3. Cheek, T.F. Jr, and Chen, D., Mater. Res. Soc. Proc. 107, 53 (1988).CrossRefGoogle Scholar
4. Margail, J., Stoemenos, J., Jaussaud, C., and Bruel, M., Appl. Phys. Lett. 54, 526 (1989).Google Scholar
5. Namavar, F., Cortesi, E., and Sioshansi, P., Mater. Res. Soc. Proc. 128, 623 (1989).CrossRefGoogle Scholar
6. El-Ghor, M.K., Pennycook, S.J., Sjoreen, T.P., White, C.W., and Narayan, J., Mater. Res. Soc. Proc. 107, 79 (1988).Google Scholar
7. El-Ghor, M.K., Pennycook, S.J., Namavar, F., and Karam, N.H., Appl. Phys. Lett. 57, 156 (1990).CrossRefGoogle Scholar
8. Visitserngtrakul, S., Jung, C.O., Ravi, T.S., Cordts, B., Burke, D.E., and Krause, S.J., Inst. Phys. Conf. Ser. No. 100, 557 (1989).Google Scholar
9. Visitserngtrakul, S., Cordts, B.F., and Krause, S., Mater. Res. Soc. Proc. 157, 161 (1990).Google Scholar
10. van Ommen, A.H., Koek, B.H., and Viegers, M.P.A., Appl. Phys. Lett. 49, 1062 (1986).CrossRefGoogle Scholar
11. van Ommen, A.H., Mater. Res. Soc. Proc. 107, 43 (1988).Google Scholar
12. Nakashima, S., and Izumi, K., J. Mater. Res. 5, 1918 (1990).Google Scholar
13. Namavar, F., Cortesi, E., Pinizzotto, R.F., and Yang, H., Mater. Res. Soc. Proc. 157, 179 (1990).Google Scholar
14. Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A 45, 1 (1988).Google Scholar
15. Bede Scientific Instruments, Ltd., Durham, UK.Google Scholar
16. Larson, B.C., White, C.W., and Appleton, B.R., Appl. Phys. Lett. 32, 801 (1978).Google Scholar
17. Tsai, C.J., Dommann, A., Nicolet, M.A., and Vreeland, T. Jr, J. Appl. Phys. 69, 2076 (1991).Google Scholar
18. Venables, D., Jones, K.S., and Namavar, F., submitted to Appl. Phys. Lett.Google Scholar
19. Maszara, W.P., J. Appl. Phys. 64, 123 (1988).CrossRefGoogle Scholar