Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T07:46:24.130Z Has data issue: false hasContentIssue false

Strain Relaxation Via Interface Nucleation of Misfit Dislocations in Intermixing Layers

Published online by Cambridge University Press:  25 February 2011

Hyo-Hoon Park
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon 305–606, Republic of Korea
Jung Kee Lee
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon 305–606, Republic of Korea
El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, P.O. Box 8, Daeduk Science Town, Daejeon 305–606, Republic of Korea
Jeong Yong Lee
Affiliation:
Department of Electronic Materials and Engineering, Korea Advanced Institute of Science and Technology, Daeduk Science Town, Daejeon 305–701, Republic of Korea
Soon-Ku Hong
Affiliation:
Department of Electronic Materials and Engineering, Korea Advanced Institute of Science and Technology, Daeduk Science Town, Daejeon 305–701, Republic of Korea
Get access

Abstract

The strain relaxation mechanism via the homogeneous nucleation of misfit dislocations from interface during interdiffusion in lattice-matched semiconductor heterostructures has been investigated. Transmission electron microscopy studies in intermixed GaInAsP/InP heterostructures revealed that the critical interdiffusion depth for the nucleation of 90° 1/6<112> partial dislocations from a tensile interface is much shallower than that of 60° 1/2<110> perfect dislocations from a compressive interface. A critical thickness model for the interface nucleation of these dislocations is developed as a modification of the classical surface nucleation'model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).Google Scholar
2. Maree, P. M. J., Barbour, J. C., Veen, J. F. van der, Kavanagh, K. L., BulleLieuwma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).Google Scholar
3. Park, H.-H., Nam, E. S., Lee, Y. T., Lee, E.-H., Lee, J. Y., and Kwon, O.D., Mat. Res. Soc. Symp. Proc. 202, 591 (1991).Google Scholar
4. Park, H.-H., Nam, E. S., Lee, Y. T., Lee, E.-H., and Lee, J. Y., Appl. Phys. Lett. 59, 2025 (1991).Google Scholar
5. Park, H.-H., Lee, K. H., Lee, J. K., Lee, Y. T., Lee, E.-H., Lee, J. Y., Hong, S.-K., and Kwon, O.D., to be published in J. Appl. Phys.Google Scholar
6. Hwang, D. M., Schwarz, S. A., Ravi, T. S., Bhat, R., and Chen, C. Y., Phys. Rev. Lett. i66, 739 (1991).Google Scholar
7. Hwang, D. M., Schwarz, S. A., Bhat, R., Chen, C. Y., and Ravi, T. S., Optical Quantum Electron. 23, S829 (1991).Google Scholar
8. Gurp, G. J. van, Wijgert, W. M. van de, Fontijn, G. M., and Thijs, P. J. A., J. Appl. Phys. 67, 2919 (1990).Google Scholar
9. Hull, D., Introduction to Dislocations, 3rd ed. (Pergamon, New York, 1984), p. 87.Google Scholar
10. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), p. 231.Google Scholar