Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:39:58.544Z Has data issue: false hasContentIssue false

Strain Relaxation Mechanisms in He+-Implanted and Annealed Si1−xGex Layers on Si(001) Substrates

Published online by Cambridge University Press:  15 March 2011

S.H. Christiansen
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
P.M. Mooney
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
J.O. Chu
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
A. Grill
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York, USA
Get access

Abstract

Strain relaxation in He+-implanted and annealed Si(001)/Si1−xGex heterostructures was investigated using transmission electron microscopy techniques and x-ray diffraction. Depending on the implant conditions, bubbles and/or platelets form below the Si/Si1−xGex interface upon annealing and act as nucleation sources for dislocation loops. The dislocation loops extend to the interface and form a misfit dislocation network there, resulting in relaxation of 30-80% of the strain in layers as thin as 100-300 nm. When bubbles form close to the interface, dislocations nucleate by a climb loop mechanism. When smaller bubbles form deeper in the Si substrate an irregular three-dimensional dislocation network forms below the interface resulting in an irregular misfit dislocation network at the interface. When platelets form deeper in the Si substrate, prismatic punching of dislocation loops is observed and dislocation reactions of misfit dislocations at the interface result in Lomer dislocation formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meyerson, B.S., Proc. IEEE 80, 1592 (1992)Google Scholar
2. Ismail, K., Rishton, S., Chu, J.O. and Meyerson, B.S., Electron Device Letters 14, 348 (1993)Google Scholar
3. Mooney, P.M., Materials Science and Engineering Reports R17, 105 (1996) and References thereinGoogle Scholar
4. Konig, U., Mat. Res. Soc. Symp. Proc. 533, 3 (1998)Google Scholar
5. Rim, K., Hoyt, J.L. and Gibbons, L.F., IEEE Trans. Electron Devices 47, 1406 (2000).Google Scholar
6. Matthew, J.W., Blakeslee, A.E., Mader, S., Thin Solid Films 33, 253 (1976)Google Scholar
7. Fitzgerald, E.A., Xie, Y.H., Monroe, D., Silverman, P.J., Kuo, J.M., Kortan, A.R., Thiel, F.A., Weir, B.E., J.Vac.Sci.Technol. B10, 1807 (1992)Google Scholar
8. LeGoues, F.K., Meyerson, B.S., Morara, J.F., Phys.Rev.Lett. 66, 2903 (1991)Google Scholar
9. Follstaedt, D.M., Myers, S.M., Lee, S.R., Appl.Phys.Lett. 69, 2059 (1996)Google Scholar
10. Mantl, S., Hollaender, B., Liedtke, R., Mesters, S., Herzog, H.J., Kibbel, H., Hackbarth, T., Nucl.Instr. and Meth. B147, 29 (1999)Google Scholar
11. Ziegler, J.F., Biersack, J.P., Littmark, U., The stopping and Range of Ions in Solids (Pergamon, New York, 1985)Google Scholar
12. Bruel, M., Nucl.Instr. and Meth. B108, 313 (1996)Google Scholar
13. VanVeen, A., Evans, J.H., Caspers, L.M., DeHosson, J.Th., J.Nucl.Mater. 12–123, 560 (1984)Google Scholar
14. Caspers, L.M., Ypma, M., VanVeen, A., Kolk, G.J. Van des, phys.stat.sol. A63, K183 (1981)Google Scholar
15. Oliviero, E., Beaufort, M.F., Barbot, J.F., J.Appl.Phys. 90, 1718 (2001)Google Scholar
16. Matthews, J.W., in: Dislocations in solids 2, Nabarro, F.R.N., ed. North Holland Publishing Company, Amsterdam, New York, Oxford, 1979 Google Scholar
17. Woolhouse, G.R., Ipohorski, M., Proc.Roy.Soc. A324, 415 (1971)Google Scholar
18. Lomer, W.A., Phil.Mag. 41, 1327 (1951)Google Scholar
19. Vdovin, V.I., Matveeva, L.A., Semenova, G.N., Skorohod, M.Ya., YTkhorik, u.A., Khazan, L.S., phys.stat.sol. (a) 92, 379 (1985)Google Scholar
20. Luysberg, M., Kirch, D., Trinkaus, H., Hollaender, B., Lenk, S., Mantl, S., Herzog, H.J., Hackbarth, T., Fichtner, P.F., Microscopy on Semiconducting Materials, IOP publishing, Oxford 2001, to be publishedGoogle Scholar