Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:07:10.559Z Has data issue: false hasContentIssue false

Strain Localization in a Molecular-Dynamics Model of a Metallic Glass

Published online by Cambridge University Press:  11 February 2011

Michael L. Falk
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2136, U.S.A.
Yunfeng Shi
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109–2136, U.S.A.
Get access

Abstract

Molecular dynamics simulations of a two-dimensional amorphous solid exhibit strain localization when loaded in uniaxial tension with free boundaries. The degree of localization depends sensitively on the rate of loading and on the existence of surface defects. Regions of both dilation and contraction arise during the shear band slip process. These dilation and contraction events correspond to dynamic free-volume generation and annihilation during shear. Correlations of the dilation and contraction of the material reveal a length scale of 1–4 atomic diameters associated with this physical process. Dilation is observed to result in nanometer scale cavitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peker, A., Johnson, W. L., Appl Phys Lett 63, 2342 (1993)Google Scholar
2. Bruck, H. A., Rosakis, A. J., Johnson, W. L., J Mater Res 11, 503 (1996)Google Scholar
3. Conner, R. D., Rosakis, A. J., Johnson, W. L., Owen, D. M., Scripta Mat 37, 1373 (1997)Google Scholar
4. Gilbert, C. J., Ritchie, R. O., Johnson, W. L., Appl Phys Lett 71, 476 (1997)Google Scholar
5. Johnson, W. L., MRS Bull 24, 42 (1999)Google Scholar
6. Lewandowski, J. J., Mater Trans 42, 633 (2001)Google Scholar
7. Mukai, T., Nieh, T. G., Kawamura, Y., Inoue, A., Higashi, K., Scripta Mat 46, 43 (2003)Google Scholar
8. Lowhaphandu, P., Lewandowski, J. J., Scripta Mat 38, 1811 (1998)Google Scholar
9. Lowhaphandu, P., Montgomery, S. L., Lewandowski, J. J., Scripta Mat 41, 19 (1999)Google Scholar
10. Lewandowski, J. J., Lowhaphandu, P., Phil Mag A 82, 3427 (2003)Google Scholar
11. Donovan, P. E., Stobbs, W. M., Acta metall 29, 1419 (1981)Google Scholar
12. Li, J., Wang, Z. L., Hufnagel, T. C., Phys Rev B 65, 4201 (2003)Google Scholar
13. Spaepen, F., Acta metall 25, 407 (1977)Google Scholar
14. Argon, A. S., Acta metall 27, 47 (1979)Google Scholar
15. Steif, P. S., Spaepen, F., Hutchinson, J. W., Acta metall 30, 447 (1982)Google Scholar
16. Li, J., Spaepen, F., Hufnagel, T. C., Phil Mag A 82, 2623 (2003)Google Scholar
17. Jiang, W. H., Pinkerton, F. E., Atzmon, M., Scripta Mat 48, 1195 (2003)Google Scholar
18. Donovan, P. E., Stobbs, W. M., Phil Mag A 47, 537 (1983)Google Scholar
19. Schuh, C. A., Nieh, T. G., Acta Mater 51, 87 (2003)Google Scholar
20. Jiang, W. H., Atzmon, M., J Mater Res 18, 755 (2003)Google Scholar
21. Falk, M. L., Phys Rev B 60, 7062 (1999)Google Scholar
22. Falk, M. L., Langer, J. S., Phys Rev E 57, 7192 (1998)Google Scholar
23. Utz, M., Debenedetti, P. G., Stillinger, F. H., Phys Rev Lett 84, 1471 (2000)Google Scholar
24. Albano, F., Lacevic, N., Falk, M. L., Glotzer, S. C., Mat Sci Eng A (2003)(in press).Google Scholar
25. Lancon, F., Billard, L., Journal De Physique 49, 249 (1988)Google Scholar
26. Lancon, F., Billard, L., Chaudhari, P., Europhysics Letters 2, 625 (1986)Google Scholar