Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:38:43.305Z Has data issue: false hasContentIssue false

Strain Induced Compositional Modulations in AlGaAs Overlayers Induced by Lateral Surface Gratings

Published online by Cambridge University Press:  10 February 2011

U. Pietsch
Affiliation:
Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14415 Potsdam, Germany
U. Zeimer
Affiliation:
Ferdinand Braun-Institut für Höchstfrequenztechnik, Albert-Einstein-Str. 11, D-12489 Berlin, Germany
L. Hofmann
Affiliation:
Ferdinand Braun-Institut für Höchstfrequenztechnik, Albert-Einstein-Str. 11, D-12489 Berlin, Germany
J. Grenzer
Affiliation:
Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14415 Potsdam, Germany
S. Gramlich
Affiliation:
Ferdinand Braun-Institut für Höchstfrequenztechnik, Albert-Einstein-Str. 11, D-12489 Berlin, Germany
Get access

Abstract

Strain and compositional modulation in AlxGa1−xAs layers grown by metalorganic vapour phase epitaxy (MOVPE) over a sinusoidally shaped GaAs (001) surface grating were studied by scanning electron microscopy (SEM), X-ray grazing-incidence diffraction (GID) and photoluminescence (PL). Two growth temperatures and two compositions were chosen to realize planar overlayers. By SEM a periodic reduction in Al-content was found at the valley positions of the GaAs grating. The appearance of such vertical quantum wells (VQWs) has been explained by the growth rate anisotropy between high-index and (001) planes and a curvature-induced capillarity flow of Ga. Estimated from PL energies a larger reduction of the Al-concentration in the VQW and also at the high-index sidewall facets was found than compared to predictions from the capillarity flow theory. Using depth-resolved GID we show that the formation of VQWs is accompanied by a periodic lateral strain field. Therefore we assume, that the formation of the VQWs is influenced by strain induced diffusion due to the interaction of opposite sidewall facets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bimberg, D., Grundmann, M. and Ledentsov, N.N., Quantum Dot Heterostructures (Wiley, Chichester, 1999).Google Scholar
2 Giannini, C., Baumbach, T., Lübbert, D., Felici, R., Tapfer, L., Marschner, T., Stolz, W., Jin-Phillipp, N.Y. and Phillipp, F., Phys.Rev. B 61, 2173 (2000).Google Scholar
3 Biasiol, G., Kapon, E., Phys. Rev. Letters 81, 2962 (1998); J. Cryst. Growth 201/202, 62 (1999).Google Scholar
4 Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
5 Shen, Q., Kycia, S.W., Tentarelli, E.S., Schaff, W.J. and Eastman, L.F., Phys.Rev.B 54, 16381 (1996).Google Scholar
6 Ulyananekov, A., Darowski, N., Grenzer, J., Pietsch, U., Wang, K. H. and Forchel, A., Phys.Rev. B 60, 16701 (1999).Google Scholar
7 Lübbert, D., Baumbach, T., Ponti, S., Pietsch, U., Leprince, L., Schneck, J. and Talneau, A., Europhys. Lett. 46, 479 (1999).Google Scholar
8 Darowski, N., Paschke, K., Pietsch, U., Wang, K. H., Forchel, A., Lfibbert, D. and Baumbach, T., Physica B 248, 104 (1998).Google Scholar
9 Darowski, N., Pietsch, U., Zeimer, U., Smimitzki, V. and Bugge, F., J.Appl.Phys. 84, 1366 (1998).Google Scholar
10 Hofmann, L., Thesis University of Marburg (2000).Google Scholar
11 Hofmann, L., Knauer, A., Rechenberg, I., Weyers, M. and Stolz, W., J. Crystal Growth 206, 255 (1999).Google Scholar