Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:24:37.722Z Has data issue: false hasContentIssue false

Strain and Damage Measurements in Ion Implanted AlxGa1−x As/GaAs Superlattices

Published online by Cambridge University Press:  26 February 2011

A. H. Hamdi
Affiliation:
California Institute of Technology, Pasadena, CA 91125
J. L. Tandon
Affiliation:
Applied Solar Energy Corporation, City of Industry, CA 91744
T. Vreeland Jr
Affiliation:
California Institute of Technology, Pasadena, CA 91125
M.-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

Strain measurements in AlxGa1−x As/GaAs superlattices have been carried out before and after Si ion implantation. For doses up to 5 × 1015 cm−2, no atomic intermixing of the sublayers is observed by backscattering spectrometry. However, with x-ray rocking curve measurements, significant changes in the strain profiles are detected for implantations with doses as low as 7 × 1012 cm−2. Interpretation of the rocking curves suggests that low-dose implantations release strain in the AlxGa1−x As sublayers. The strain profile recovery of the implanted samples, upon annealing at ∼ 420°C, implies that the damage caused by implantation is largely reversible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, Y.-H., Werner, M., and Wang, S., Appl. Phys. Lett., 45, 606 (1984).CrossRefGoogle Scholar
2. Arnold, D., Klem, J., Henderson, T., Morkoc, M., and Erickson, L. P., Appl. Phys. Lett., 45, 764 (1984).Google Scholar
3. Coleman, J. J., Dapkus, P. D., Kirkpatrick, C. G., Camras, M. D., and Holonyak, N., Jr., Appl. Phys. Lett., 40, 904 (1982).Google Scholar
4. Myers, D. R., Biefeld, R. M., Fritz, I. J., Picraux, S. T., and Zipperian, T. E., Appl. Phys. Lett., 44, 1052 (1984).Google Scholar
5. Arnold, G. W., Picraux, S. T., Peercy, P. S., Myers, D. R., and Dawson, L. R., Appl. Phys. Lett., 45, 382 (1984).Google Scholar
6. Picraux, S. T., Arnold, G. W., Myers, D. R., Dawson, L. R., Biefeld, R. M., Fritz, I. J., and Zipperian, T. E., IBMM'84, Ithaca, New York (July 16–20, 1984); proceedings in Nucl. Instr. Meth. B (in press).Google Scholar
7. Speriosu, V. S. and Vreeland, T. Jr., J. Appl. Phys. 56, 1591 (1984).CrossRefGoogle Scholar
8. Ibers, J. A. and Hamilton, W. C., eds., International Tables X-Ray Crystallography, Vol. IV, (Kymoch, Birmingham, 1974).Google Scholar
9. Hamdi, A. H., Speriosu, V. S., Tandon, J. L., and Nicolet, M-A., Phys. Rev. B (in press).Google Scholar
10. Speriosu, V. S., Paine, B. M., Nicolet, M-A., and Glass, H. L., Appl. Phys. Lett. 40, 604 (1982).CrossRefGoogle Scholar
11. Hamdi, A. H., Tandon, J. L., Vreeland, T. Jr., and Nicolet, M-A., (to be published).Google Scholar
12. Hamdi, A. H., Tandon, J. L., and Nicolet, M-A., 8th Intl. Conf. on the Application of Accelerators in Research and Industry, Denton, Texas, (November 12–14, 1984); proceedings in Nucl. Instr. Meth. B.Google Scholar