Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:56:37.059Z Has data issue: false hasContentIssue false

STM Characterization of Low Dimensional Surface Electronic Properties of Undoped Diamond in Buffer Solutions

Published online by Cambridge University Press:  01 February 2011

Nianjun Yang
Affiliation:
[email protected], AIST, DRC, Central 2, 1-1-1 Umezono, Tsukuba, 305-8568, Japan, +81-29-861-4836
Hiroshi Uetsuka
Affiliation:
[email protected], Diamond Research Center/AIST, Tsukuba, 305-8568, Japan
Takatoshi Yamada
Affiliation:
[email protected], Diamond Research Center/AIST, Tsukuba, 305-8568, Japan
Christoph E. Nebel
Affiliation:
[email protected], Diamond Research Center/AIST, Tsukuba, 305-8568, Japan
Get access

Abstract

Diamond is a promising semiconductor which shows some unique surface electronic features if grown optimized with low bulk and surface defect densities. The appearance of a highly conducting surface layer if immersed into electrolyte solution is maybe the most striking feature. Scanning tunneling microscopy experiments on diamond in electrolyte solutions are applied to determine the electronic properties governing these transition. These experiments reveal the formation of unoccupied quantized electronic states in the valence band close to the surface. A two-dimensional density of state distribution with three levels from light-, heavy-, and split-off-band holes is detected. Removal of the electrolyte causes a reversible transition into the insulating state and vice versa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koizumi, S.; Kamo, M.; Ozaki, O.; Inuzaka, T.; Appl. Phys. Lett. 71, 10651067 (1997).Google Scholar
2. Ekimov, E.A.; Sidorov, V.A.; Bauer, E.D.; Melnik, N.N.; Curro, N.J.; Thompson, J.D.; Stishov, S.M.; Nature 428, 542545 (2004).10.1038/nature02449Google Scholar
3. Chidress, L.; Dutt, G.M.V.; Taylor, J.M.; Zibrov, A.S.; Jelezo, F.; Wrachtrup, J.; Hemmer, P.R.; Lukin, M.D.; Science 314, 281295 (2006).10.1126/science.1131871Google Scholar
4. Yang, W.S., Auciello, O., Butler, J.E., Cai, W., Carlisle, J.A Gerbi, J., Gruen, D.M., Knickerbocker, T., Lasseter, T.L., Russell, J.N., Smith, L.M., Hamers, R.J.; Nature Materials 1 (4): 253257 (2002).Google Scholar
5. Koizumi, S., Watanabe, K., Hasegawa, F., Kanda, H.; Science 292 (5523), 18991901 (2001).Google Scholar
6. Cui, J.B.; Ristein, J.; ley, L.; Phys. Rev. Let. 81 (2), 429432 (1998).Google Scholar
7. Landstrass, M.I.; Ravi, K.V.; Appl. Phys. Lett. 55, 975977 (1989)Google Scholar
8. Maier, F.; Riedel, M.; Mantel, B.; Ristein, J. Ley, L.; Phys. Rev. Let. 85, 34723475 (2000).10.1103/PhysRevLett.85.3472Google Scholar
9. Shin, D.; Watanabe, H.; Nebel, C.E.; J. Am. Chem. Soc. 127, 1123611237 (2005).Google Scholar
10. Nebel, C.E.; Rezek, B.; Shin, D.; Watanabe, H.; phys. stat. sol. (a) 32733298 (2006).Google Scholar
11. Nebel, C.E.; Rezek, B.; Zrenner, A.; phys. stat. sol (a) 11, 24322438 (2004).Google Scholar
12 Nebel, C.E.; Rezek, B.; Zrenner, A.; Diam. Rel. Mat. 13, 20312036 (2004).Google Scholar
13. Gan, L.; Baskin, E.; Saguy, C.; Kalish, R.; PRL 96, 196808 (2006).10.1103/PhysRevLett.96.196808Google Scholar
14. Nützenadel, C.; Küttel, O.M.; Diederich, L.; Maillard-Schaller, E.; Groening, O.; Schlapbach, L.; Surface Science 369, L111–L116 (1996).Google Scholar
15. Bobrov, K.; Mayne, A. J.; Dujardin, G.; Nature 413, 616619 (2001).10.1038/35098053Google Scholar
16. Watanabe, H., Takeuchi, D.; Yamanaka, S.; Okushi, H.; Kajimura, K.; Sekiguchi, T.; Diam. Rel. Mat. 8, 12721276 (1999).Google Scholar
17. Rezek, B.; Garrido, J.A.; Stutzmann, M.; Nebel, C.E.; Snidero, E.; Bergonzo, P.; phys. stat. sol. (a) 193, 523528 (2002).Google Scholar
18. Tao, N.J.; Li, C.Z.; He, H.X.; J. Electroanalytical Chemistry 492, 8193 (2000).10.1016/S0022-0728(00)00295-3Google Scholar
19. Rezek, B; Sauerer, C.; Nebel, C.E.; Stutzmann, M.; Ristein, J.; Ley, L.; Snidero, E.; Bergonzo, P.; Appl. Phys. Lett. 82 (14), 22662268 (2003).10.1063/1.1564293Google Scholar
20. Rezek, B.; Shin, D.; Watanabe, H.; Nebel, C.E.; Sensors and Actuators B 122, 596599 (2007).Google Scholar