Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:23:52.545Z Has data issue: false hasContentIssue false

Step Structures Created on Vicinal Si(111) During Resistive Electrical Heating

Published online by Cambridge University Press:  25 February 2011

R. J. McClelland
Affiliation:
Nippon Telegraph and Telephone Corporation, Applied Electronics Laboratories, Musashino-shi, Tokyo 180 Japan
Y. Homma
Affiliation:
Nippon Telegraph and Telephone Corporation, Applied Electronics Laboratories, Musashino-shi, Tokyo 180 Japan
Get access

Abstract

Scanning reflection electron microscopy was used to examine step structures which form on vicinal Si(111) specimens during resistive electrical heating under ultrahigh vacuum. Heating-current-induced step bunching occurred, forming substantially linear step-bands in specific temperature regions. Small pinning points disrupted the linearity of steps. The interaction between step-bands and large pinning points resulted in the formation of macrosteps, which showed some stability against dispersal during current reversal. Ion-etched grooves influenced step orientation during current-induced step migration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishikawa, Y., Ikeda, N., Kenmochi, M., and Ichinokawa, T., Surf. Sci. 159, 256 (1985).Google Scholar
2. Phaneuf, R.J. and Williams, E.D., Phys. Rev. B 41, 2991 (1990); Phys. Rev. Lett. 58, 2563 (1987).Google Scholar
3. Mundschau, M.. Bauer, E., Telieps, W., and Swiech, W., Phil. Mag A 61, 257 (1990); Surf. Sci. 223, 413 (1989).Google Scholar
4. Latyshev, A.V., Aseev, A.L., Krasilnikov, A.B., and Stenin, S.I., Surf. Sci. 213, 157 (1989).Google Scholar
5. Yamanaka, A., Ohse, H., and Yagi, K., Proceedings of the XIIth International Congress for Electron Microscopy, (San Francisco Press, Inc., San Francisco, CA 1990) pp. 306307.Google Scholar
6. Swartzentruber, B.S., Mo, Y.-W., Webb, M.B., and Lagally, M.G., J. Vac. Sci. Technol. A 7, 2901 (1989).Google Scholar
7. Homma., Y. McClelland, R.J., and Hibino, H., Jpn. J. Appl. Phys. 29. L2254 (1990).Google Scholar
8. Takaoka, H., presented at the 1990 Fall Meeting of the Japan Society of Applied Physics, Sept 25–29, Morioka, Japan, 1990 (unpublished).Google Scholar
9. Suzuki, M., Kudoh, Y., Homma, Y., and Kaneko, R. (to be published).Google Scholar
10. Duryea, T.W. and Huntington, H.B., Surf. Sci. 199, 261 (1988).Google Scholar
11. Adam, P. and Wever, H., Surf. Sci. 21, 307 (1970).Google Scholar
12. Fiks, V.B., Soviet Phys.-Solid State 1, 14 (1959); Soviet Phys.-Solid State 1, 1212 (1960).Google Scholar
13. Yamanaka, A., Yagi, K., and Yasunaga, H., Ultramicroscopy 29, 161 (1989).Google Scholar
14. Griffith, J.E., Kubby, J.A., Wierenga, P.E., and Kochanski, G.P. in Heteroepitaxy on Silicon: Fundamentals, Structure, and Devices, edited by Choi, H.K., Hull, R., Ishiwara, H., and Nemanich, R.J. (Mater. Res. Soc. Proc. 116, Pittsburgh, PA 1988) pp. 2732.Google Scholar
15. Hull, R., Fischer-Colbrie, A., and Rosner, S J. in Initial Stages of Epitaxial Growth, edited by Hull, R., Murray Gibson, J., and Smith, D.A. (Mater. Res. Soc. Proc. 94, Pittsburgh, PA 1987) pp. 2532.Google Scholar
16. Yang, Y.-N. and Williams, E.D., J. Vac. Sci. Technol. A 8, 2481 (1990).Google Scholar
17. Chang, D.B. and McDaniel, J.C., Phys. Rev. Lett. 63, 1066 (1989).Google Scholar