Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:46:55.454Z Has data issue: false hasContentIssue false

Step Bunching, Chemical Ordering, and Diffusivity in Si1−yCy Heteroepitaxy

Published online by Cambridge University Press:  10 February 2011

Frank Grosse*
Affiliation:
UCLA Department of Mathematics, Los Angeles, CA HRL Laboratories, Malibu, CA
Edward T. Croke
Affiliation:
UCLA Department of Mathematics, Los Angeles, CA
Mark F. Gyureb
Affiliation:
HRL Laboratories, Malibu, CA
Margaret Floydc
Affiliation:
Center for Solid State Science Arizona State University, Tempe, AZ
David J. Smith
Affiliation:
Center for Solid State Science Arizona State University, Tempe, AZ
*
Corresponding author. Contact information HRL Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265, USA. Tel.: +01 310 317 5778; fax: +01 310 317 5958; e-mail: [email protected]
Get access

Abstract

The growth of Si1−yCy on Si(001) and Si(118) surfaces is investigated experimentally and theoretically. A step instability is found on (118) surfaces leading to step bunching, under low C-concentrations. This behavior is explained by increased diffusivity of Si dimers in the vicinity of carbon. Self adjusting step bunches are found in kinetic Monte Carlo simulations with ordering of the carbon along nearly (001) planes. Experimental parameters (i.e., temperature, flux rate, and tilt angle of the substrate), which are controllable experimentally, can be used to adjust the length scale of the step bunching.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Osten, H. J., Kim, M., Pressel, K., and Zaumseil, P., J. Appl. Phys. 80, 6711 (1996).Google Scholar
[2] Zerlauth, S., Seyringer, H., Penn, C., and Schäffler, F., Appl. Phys. Lett. 71, 3826 (1997).Google Scholar
[3] Croke, E. T., Hunter, A. T., Ahn, C. C., Chandrasekhar, D., Laursen, T., Smith, D. J., and Mayer, J. W., J. Vac. Sci. Tech. B 16, 1937 (1998). 68 Google Scholar
[4] Osten, H. J., Griesche, J., and Scalese, S., Appl. Phys. Lett. 74, 836 (1999).Google Scholar
[5] Croke, E. T., Grosse, F., Gyure, M. F., Floyd, M., and Smith, D. J., submitted to Appl. Phys. Lett. (2000).Google Scholar
[6] Swartzentruber, B., Phys. Rev. Lett. 76, 459 (1996).Google Scholar
[7] Goringe, C. M. and Bowler, D. R., Phys. Rev. B 56, R7073 (1997).Google Scholar
[8] Leifeld, D., Grützmacher, O., Müller, B., Kern, K., Kaxiras, E., and Kelires, P. C., Phys. Rev. Lett. 82, 972 (1999).Google Scholar
[9] Liu, C.-L., Borucki, L. J., Merchant, T., Stoker, M., and Korkin, A., Appl. Phys. Lett. 76, 885 (2000).Google Scholar
[10] Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
[11] Murty, R. M. V. and Cooper, B. H., Phys. Rev. Lett. 83, 352 (1999).Google Scholar