Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:29:57.671Z Has data issue: false hasContentIssue false

Star-like Aromatic Conjugated Polymers and Dendrimers for OLEDs

Published online by Cambridge University Press:  01 February 2011

Irina A. Khotina
Affiliation:
A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova str. 28, 117813, Moscow, Russia
Diana Yu. Baranova
Affiliation:
A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova str. 28, 117813, Moscow, Russia
Natalia S. Burenkova
Affiliation:
A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova str. 28, 117813, Moscow, Russia
Anastasia A. Gurskaja
Affiliation:
A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova str. 28, 117813, Moscow, Russia
Peter M. Valetsky
Affiliation:
A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilova str. 28, 117813, Moscow, Russia
Lyudmila M. Bronstein
Affiliation:
Department of Chemistry, Indiana University, Bloomington, IN 47405, U.S.A.
Get access

Abstract

Highly branched photoluminescent polyphenylenes (PP) containing 1,3,5-triphenylbenzene (TPB) fragments were prepared via combination of cyclocondensation of acetylaromatic compounds and Ni0-catalyzed dehalogenation. Defect free PP with star-like fragments were synthesized using Ni0-catalyzed polymerization of aromatic bromides obtained by modification of 1,3,5-tri(p-bromophenyl)benzene. The molecular weights of the polymers were 6700, 8600, and 15300 Da. The maximum photoluminescence in solution (quantum yield of 96%) was obtained for the highly branched polymer with star-like TPB fragments, bearing no Br or acetyl groups. The PP of this kind show also very bright fluorescence in a solid state under UV irradiation at 360 nm so they can be considered as promising materials for OLED applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, J. I., Rep. Progr. Appl. Chem. 53, 544 (1968).Google Scholar
2. Kraft, A., Grimsdale, A. C., Holmes, A. B., Angew. Chem. Int. Ed. 37, 403 (1998).10.1002/(SICI)1521-3773(19980302)37:4<402::AID-ANIE402>3.0.CO;2-93.0.CO;2-9>Google Scholar
3. Yu, W.-L., Pei, J., Cao, Y., Huang, W., Heeger, A. J., Chem. Comm. 1837 (1999).10.1039/a905482kGoogle Scholar
4. Yang, Y., Pey, Q., Heeger, A. J., J. Appl. Phys. 79, 934 (1996).10.1063/1.360875Google Scholar
5. Teplyakov, M. M., Uspekhi Khimii (Russian) 48, 344 (1979).Google Scholar
6. Kovacic, P., Jones, M. B., Chem. Rev. 87, 357 (1987).10.1021/cr00078a005Google Scholar
7. Wiesler, U.-M., Weil, T., Muellen, K., Topic. Curr. Chem. 212, 1 (2001).10.1007/3-540-44924-8_1Google Scholar
8. Rehahn, M., Schüter, A. D., Wegner, G., Makromol. Chem. 191, 1991 (1990).10.1002/macp.1990.021910902Google Scholar
9. Rehahn, M., Schlueter, A. D., Wegner, G., Feast, W. J., Polymer 30, 1054 (1989).10.1016/0032-3861(89)90078-5Google Scholar
10. Wang, Y., Quirk, R., Macromolecules 28, 3495 (1995).10.1021/ma00114a001Google Scholar
11. Ueda, M., Ichikawa, F., Macromolecules 23, 926 (1990).10.1021/ma00206a003Google Scholar
12. Kim, Y. H., Webster, O. W., J. Amer. Chem. Soc. 112, 4592 (1990).10.1021/ja00167a094Google Scholar
13. Kim, Y. H., Webster, O. W., Macromolecules, 25, 5561 (1992).10.1021/ma00047a001Google Scholar
14. Sergeev, V. A., Chernomordik, Y. A., Kurapov, A. S., Uspekhi Khimii (Russian), 53, 518 (1984).Google Scholar
15. Peng, H., Luo, J., Cheng, L., Lam, J. W. Y., Xu, K., Dong, Y., Zhang, D., Huang, Y., Xu, Z., Tang, B. Z., Optic. Mater. 21, 315 (2003).10.1016/S0925-3467(02)00156-8Google Scholar
16. Peng, H., Lam, J. W. Y., Zheng, R., Haussler, M., Luo, J., Xu, K., Tang, B. Z., ACS Polym. Prep. 44 (1), 1159 (2003).Google Scholar
17. Urman, Y. G., Teplyakov, M. M., Khotina, I. A., Alekseeva, S. G., Slonim, I. Y., Korshak, V. V., Makromol. Chem. 185, 67 (1984).10.1002/macp.1984.021850107Google Scholar
18. Khotina, I. A., Izumrudov, V. A., Tchebotareva, N. V., Rusanov, A. L., Macromol. Chem. Phys. 202, 2360 (2001)10.1002/1521-3935(20010701)202:11<2360::AID-MACP2360>3.0.CO;2-D3.0.CO;2-D>Google Scholar
19. Khotina, I. A., Shmakova, O. E., Baranova, D. Yu., Burenkova, N. S., Gurskaja, A. A., Valetsky, P. M., Bronstein, L. M., Macromolecules 36, 8353 (2003).10.1021/ma0347114Google Scholar
20. Crosby, G. A., Demas, J. N., J. Phys. Chem. 75, 991 (1971).10.1021/j100678a001Google Scholar