Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T05:09:08.388Z Has data issue: false hasContentIssue false

Stark Effects on Band Gap and Surface Phonons of Semiconductor Quantum Dots in Dielectric Hosts

Published online by Cambridge University Press:  15 February 2011

R. Mu
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN 37208
A. Ueda
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN 37208
Y -S. Tung
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN 37208
D. O. Henderson
Affiliation:
Chemical Physics Laboratory, Department of Physics, Fisk University, Nashville, TN 37208
Jane G. Zhu
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, Oak Ridge, TN 37831-6057
John D. Budai
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, Oak Ridge, TN 37831-6057
W. C. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, Oak Ridge, TN 37831-6057
Get access

Abstract

We have investigated quantum-confined Stark effect (QCSE) on GaAs and CdSe nanocrystals and the electric field effect on surface phonons of GaAs nanocrystals isolated in sapphire substrates. For a strongly quantum-confined system, GaAs quantum dots illustrated no exciton energy shift. When the excitons are weakly confined in CdSe, a ∼ 2 meV red-shift was observed. On the other hand, the results of the electric field effect on surface phonon are dramatic both phonon oscilator strength and freqnency. As the strength of the electric field increases, the total intensity of the surface phonon decreases. At the same time, an additional peak was also observed at 277 cm-1, which is about 3 cm-1 above the center frequency of the surface phonon mode of GaAs nanocrystals embedded in a sapphire host.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For example, Wang, Y. and Nerron, N., J. Phys. Chem. 91, 5005 (1987); O. I. Micic, Z.Li, G. Mills, J. C.Sullivan, and D.Meisel, J. Chem. Phys. 91, 6221 (1987); ibid J. Phys. Chem. 98, 4966 (1994); D. O. Henderson, R.Mu, A.Ueda, A.Burger, K. T.Chen, and D. O. Frazier, Mat. Res. Soc. Proc. 366, 283 (1995); M.Fuji, S.Hayashi and K.Yamakoto, Appl. Phys. Lett 57, 2692 (1990).Google Scholar
2. White, C. W., Budai, J. D., Zhu, J. G., Withrow, S. P., Hembree, D. M., Jr., Magruder, R. H. and Henderson, D. O., Mat. Res. Soc. Symp. Proc. 358, 175 (1995); C. W.White, J. D.Budai, J. G. Zhu, S. P.Withrow, D. M.Hembree, Jr., D. O. Henderson, A.Ueda, Y. S.Tung, R.Mu and R. H. Magruder, J. Appl. Phys. (under review); R.Mu, D. O. Henderson, Y. S.Tung, A.Ueda, C. W. White, Jane G.Zhu, JVST B (under review).Google Scholar
3. Budai, J. D., White, C. W., Withrow, S. P., Zhu, J. G., Ion-Solid Interactions for Materials Modification and Processing (Mat. Res. Soc. Symp. fall 1995).Google Scholar
4. Jaziri, S., Solid State Commun. 91, 171 (1994).Google Scholar
5. Dissanayake, A. S., Lin, J. Y., and Jiang, H. X., Phys. Rev. B 51, 5457 (1995).Google Scholar
6. Woggon, U., Bogdanov, S. V., Wind, O., Schlaad, K. -H., Pier, H., Klingshirn, C. K., Chatziagorastou, P. and Fritz, H. P., Phys. Rev. B 48, 11979 (1993).Google Scholar
7. Chiba, Y. and Ohnishi, S., Phys. Rev. B 38, 12988 (1988).Google Scholar
8. Bunget, I. and Popescu, M., Physics of Solid Dielectrics, Chap. 1, pp 15 (Elsevier, 1984).Google Scholar
9. For Example, Miller, D. A. B. in Confined Electrons and Photons edited by Burstein, E. and Weisburch, C., p 675701 (Nano Series Vol.340, Plenum Press, New York and London, 1995) (and references therein).Google Scholar
10. Ruppin, R., Electromagnetic Surface Modes edited by Boardman, A. D., chap. 9, p 345398 (John Wiley & Sons Ltd., 1982); R.Ruppin and R.Englman, Rep. Prog. Phys. 33, 149 (1970); S. Hayashi, Jpn. J. Appl. Phys. 23, 665 (1984).Google Scholar
11. Blakemore, J. S., J. Appl. Phys. 53, R123 (1982).Google Scholar