Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T06:56:43.562Z Has data issue: false hasContentIssue false

Stable Ohmic Contacts on GaAs and GaN Devices for High Temperatures

Published online by Cambridge University Press:  11 February 2011

A. Piotrowska
Affiliation:
Institute of Electron Technology, Warsaw, Poland
E. Kaminska
Affiliation:
Institute of Electron Technology, Warsaw, Poland
A. Barcz
Affiliation:
Institute of Electron Technology, Warsaw, Poland Institute of Physics, PAS, Warsaw, Poland.
K. Golaszewska
Affiliation:
Institute of Electron Technology, Warsaw, Poland
H. Wrzesinska
Affiliation:
Institute of Electron Technology, Warsaw, Poland
T. T. Piotrowski
Affiliation:
Institute of Electron Technology, Warsaw, Poland
E. Dynowska
Affiliation:
Institute of Physics, PAS, Warsaw, Poland.
R. Jakiela
Affiliation:
Institute of Physics, PAS, Warsaw, Poland.
Get access

Abstract

We have studied thermal stability of Nb and NbN contacts to GaAs and GaN by x-ray diffraction and SIMS, and demonstrated their excellent behaviour under high temperature annealing. GaAs/Nb and GaAs/NbN contacts are stable up to 800°C and 900°C, respectively while GaN/NbN and GaN/Nb/NbN remain stable up to 1000°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shapirio, J. R., Solid State Technol. 10, 161 (1985).Google Scholar
2. Kaminska, E., Piotrowska, A., Guziewicz, M., Golaszewska, K., Barcz, A., Turos, A., Mizera, E., Adamczewska, J., Rouvimov, S., Liliental-Weber, Z.. Bremser, M. D., and Davies, R. F., Electron Technology 32, 304 (1999).Google Scholar
3. Zhang, L. C., Liang, C. L., Cheung, S. K., and Cheung, N. W., J. Vac. Sci. Technol. B 5, 1716 (1987).Google Scholar
4. Hotovy, I., Huran, J., Buc, D., and Srnak, S., Vacuum 50, 45 (1998).Google Scholar
5. Hultman, L., Vacuum 57, 1 (2000).Google Scholar
6. Kim, H. K., Seong, T. Y., and Lee, C. R., J. Electron. Mater. 30, 266 (2001).Google Scholar
7. Knoch, J., Appenzeller, J., and Lengeler, B., J. Appl. Phys. 88, 3522 (2000).Google Scholar
8. Schapers, Th., Muller, R. P., Crecelius, G., Hardtdegen, H., and Luth, H., J. Appl. Phys. 88, 4440 (2000).Google Scholar
9. Marlow, G. S., Das, M. B., Solid-State Electronics 25 (1982) 91.Google Scholar
10. Kaminska, E., Piotrowska, A., Guziewicz, M., Kasjaniuk, S., Barcz, A., Dynowska, E., Bremser, M. D., Nam, O. H., and Davis, R. F., Mar. Res. Soc. Symp. Proc. 449, 1055 (1997).Google Scholar
11. Wolter, S. D., Luther, B. P., Mohney, S. E., Karlicek, R. F. Jr, and Kern, R. S., Electrochem. and Solid-St. Lett. 2, 151 (1999).Google Scholar