Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:49:19.541Z Has data issue: false hasContentIssue false

Stable Hydride-Structures on Si(111) Surface in Pure Water

Published online by Cambridge University Press:  21 February 2011

Satoru Watanabe
Affiliation:
Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Key Horiuchi
Affiliation:
Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Takashi Ito
Affiliation:
Fujitsu Laboratories Ltd. 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Get access

Abstract

We investigated the hydride structures at the step edges on Si( 111) surfaces after removing surface oxide by HF solution, followed by immersion in boiling water, by using polarized infrared attenuated total-reflection spectroscopy. Vicinal (111) surfaces misoriented toward the [112] direction at angles of 0°, 2°, and 4° were used to know the hydride structures at the steps. We assigned absorption peaks as monohydride chains at the step edges along the [110] direction, vertical dihydride (whose three atoms make a surface vertical to [111]) at the kinks, and monohydride on the terraces. We determined that the silicon monohydride chain forms an atomically straight step edge along the [110] direction with a small amount of vertical dihydride kinks after 5-min immersion in boiling water. Only the monohydrides on the terraces and the mohydride chains are stable on vicinal (111) surface in pure water.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1)Kobayashi, Y., Shinoda, Y., and Sugii, K.: Jpn. J. Appl. Phys. 29(1990)1004.CrossRefGoogle Scholar
2)Kobayashi, Y. and Sugii, K.: J. Vac. Sci. & Technol. A 10(1992)2308.CrossRefGoogle Scholar
3)Sun, Y. -K., Bonser, D. J., and Engel, T.: J. Vac. Sci. & Technol. A 10(1992)2314.CrossRefGoogle Scholar
4) For instance, Tomita, H., Kikuchi, T., and Furuya, K.: Jpn. J. Appl. Phys. 30(1991)897.CrossRefGoogle Scholar
5)Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K.: Appl. Phys. Lett. 56(1990)656.CrossRefGoogle Scholar
6)Chabal, Y. J.: MRS Symp. Proc. Vol. 259. Chemical surface preparation, passivation and cleaning for semiconductor growth and processing p349 (1992)Google Scholar
7)Watanabe, S., Nakayama, N., and Ito, T.: Appl. Phys. Lett. 59(1991)1458.CrossRefGoogle Scholar
8)Watanabe, S., Shigeno, M., Nakayama, N., and Ito, T.: Jpn. J. Appl. Phys. 30(1991)3575.CrossRefGoogle Scholar
9)Chabal, Y. J., Christman, S. B., Chaban, E. E., and Yin, M. T.: J. Vac. Sci. & Technol. A1(1983)1241.CrossRefGoogle Scholar
10)Lucovsky, G.: J. Vac. Sci. & Technol. 16(1979)1225.CrossRefGoogle Scholar
11)Chabal, Y. J., Higashi, G. S., Raghavachari, K., and Burrows, V. A.: J. Vac. Sci. & Technol. A7(1989)2104.CrossRefGoogle Scholar
12)Jacob, P. and Chabal, Y. J.: J. Chem. Phys. 95(1991)2897.CrossRefGoogle Scholar
13)Hessel, H. E., Feltz, A., Reiter, M., Memmert, U., and Behm, R. J.: Chem. Phys. Lett. 186(1991)275.CrossRefGoogle Scholar