Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T10:02:58.610Z Has data issue: false hasContentIssue false

Spontaneous and Stimulated Intersubband Emission Under Optical Pumping

Published online by Cambridge University Press:  10 February 2011

P. Boucaud
Affiliation:
IEF, Université Paris XI, Bat 220, 91405 Orsay, FRANCE, [email protected]
S. Sauvage
Affiliation:
IEF, Université Paris XI, Bat 220, 91405 Orsay, FRANCE, [email protected]
O. Gauthier-Lafaye
Affiliation:
IEF, Université Paris XI, Bat 220, 91405 Orsay, FRANCE, [email protected]
Z. Moussa
Affiliation:
IEF, Université Paris XI, Bat 220, 91405 Orsay, FRANCE, [email protected]
F.-H. Julien
Affiliation:
IEF, Université Paris XI, Bat 220, 91405 Orsay, FRANCE, [email protected]
R. Prazeres
Affiliation:
CLIO/Lure, Université Paris XI, Bat 209, 91405 Orsay, FRANCE
F. Glotin
Affiliation:
CLIO/Lure, Université Paris XI, Bat 209, 91405 Orsay, FRANCE
J.-M. Ortega
Affiliation:
CLIO/Lure, Université Paris XI, Bat 209, 91405 Orsay, FRANCE
R. Planel
Affiliation:
L2M, 196 Av. H. Ravera, 91220 Bagneux, FRANCE
J. P. Leburton
Affiliation:
Beckman Institute, University of Illinois, Urbana-Champaign IL 61801, USA
V. Berger
Affiliation:
LCR, Thomson CSF, Domaine de Corbeville, 91404 Orsay, FRANCE
J. Nagle
Affiliation:
LCR, Thomson CSF, Domaine de Corbeville, 91404 Orsay, FRANCE
Get access

Abstract

We have investigated the mid-infrared spontaneous and stimulated emission between confined subbands in the conduction band of GaAs/AlGaAs quantum wells. The carriers which give rise to the intersubband emission are excited in the upper subbands using an intersubband optical pumping in coupled asymmetric quantum wells. The quantum wells are designed using phonon engineering in order to obtain population inversion between the second and first excited subband. This is obtained by adjusting the subband energy spacing between E2 and E1 close to the optical phonon energy which in turn allows an efficient relaxation. We have first observed intersubband spontaneous emission between E3 and E2 at 14 μm using an intersubband pumping with a CO2 laser in resonance with the E1-E3 transition. In a second set of experiments, the quantum wells are embedded in an infrared waveguide. We have measured the stimulated intersubband gain using a picosecond two-color free electron laser. The first color bleaches the E1-E3 transition and provides the population inversion. The intersubband stimulated gain is measured versus the waveguide length and photon energy. Stimulated gains ≈ 80 cm−1 are reported thus demonstrating that laser emission under optical pumping appears feasible in optimized structures. Finally, we show that intersubband emission can also be observed in quantum wells using an interband optical pumping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Karazinov, R. F., and Suris, R. A., Sov. Phys. Semicond. 5, 707 (1971).Google Scholar
[2] Helm, M., England, P., Colas, E., DeRosa, F., and Allen, S. J. Jr, Phys. Rev. Lett. 63, 74 (1989).Google Scholar
[3] Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., Electron. Lett. 29, 2230 (1993).Google Scholar
[4] Educato, J.-L., Leburton, J.-P., Boucaud, P., Vagos, P., and Julien, F. H., Phys. Rev. B. Brief Report 47, 12949 (1993).Google Scholar
[5] Faist, J., Capasso, F., Sivco, D., Sirtori, C., Hutchinson, A. L., Chu, S. N. G. and Cho, A. Y., Science, 264, 553 (1994).Google Scholar
[6] Sirtori, C., Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., Chu, S. N. G., and Cho, A. Y., Appl. Phys. Lett. 68, 1745 (1996).Google Scholar
[7] Faist, J., Capasso, F., Sirtori, C., Sivco, D. L., Hutchinson, A. L., and Cho, A. Y., Electron. Lett. 32, 560 (1996).Google Scholar
[8] Moussa, Z., Boucaud, P., Julien, F. H., Lavon, Y., Sa'ar, A., Berger, V., Nagle, J., and Coron, N., Electron. Lett. 31, 912 (1995).Google Scholar
Lavon, Y., Sa'ar, A., Moussa, Z., Julien, F. H., and Planel, R., Appl. Phys. Lett. 67, 1984 (1995).Google Scholar
[9] Moussa, Z., Ph.D thesis, Université Paris XI, November 1996.Google Scholar
[10] Hirakawa, H., Grayson, M., Tsui, D. C., and Kurdak, C., Phys. Rev. B 47, 16651 (1993).Google Scholar
[11] Sauvage, S., Moussa, Z., Boucaud, P., Julien, F. H., Berger, V., and Nagle, J., submitted to Appl. Phys. Lett.Google Scholar
[12] Sauvage, S., Boucaud, P., Gauthier-Lafaye, O., Julien, F. H., Berger, V., and Nagle, J., unpublished.Google Scholar
[13] Julien, F. H., Vagos, P., Lourtioz, J.-M., Yang, D. D., and Planel, R., Appl. Phys. Lett. 59, 2645 (1991).Google Scholar
[14] Jaroszynski, D. A., Prazeres, R., Glotin, F., and Ortega, J.-M., Phys. Rev. Lett. 72, 2387 (1994).Google Scholar
[15] Gauthier-Lafaye, O., Sauvage, S., Boucaud, P., Julien, F. H., Prazeres, R., Glotin, F., Ortega, J.-M., Thierry-Mieg, V., Planel, R., Leburton, J.-P., Berger, V., submitted to Phys. Rev. Lett.Google Scholar
[16] Julien, F. H., Sa'ar, A., Wang, J., and Leburton, J. P., Electron. Lett. 31, 838 (1995).Google Scholar
Wang, J., Leburton, J.-P., Moussa, Z., Julien, F. H., and Sa'ar, A., J. Appl. Phys. 80, 1970 (1996).Google Scholar