Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:31:45.246Z Has data issue: false hasContentIssue false

Spin Properties of Quantum wells Incorporating Semimagnetic Semiconductors

Published online by Cambridge University Press:  17 March 2011

N. Malkova
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
U. Ekenberg
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology, S-164 40 Kista, Sweden
L. Thylen
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology, S-164 40 Kista, Sweden
Get access

Abstract

The electronic band-edge spectrum of magnetic semiconductor quantumwells containing a diluted magnetic semiconductor as one of the constituents is studied within the envelope-function formalism. Quantum wells with normal and mutually inverted band arrangements are considered. The spd hydribization between the bare sp-electron states and the d-states of the Mn atoms is shown to lead to a spin-splitting effect. The spin-splitting effect is studied as a function of external magnetic field, well width, valence band offset and fraction of magnetic atoms. The results have bearing on the perspective for using the magnetic semicondutor structures in spin electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ortenberg, M. von, Phys. Rev. Lett. 49, 1041 (1982).Google Scholar
2. Prinz, G. A., Physics Today 48 (4), 58 (1995).Google Scholar
3. Datta, S. and Das, B., Appl. Phys. Lett. 56, 665 (1990).Google Scholar
4. Dresselhaus, G., Phys. Rev. 100, 580 (1955).Google Scholar
5. Silver, M., Batty, W., Ghiti, A., and O'Reilly, E. P., Phys. Rev.B 46, 6781 (1992).Google Scholar
6. Bychkov, Yu. A. and Rashba, E.I., J. Phys. C: Solid State Phys. 17, 6039 (1984).Google Scholar
7. Hui, P. M., Ehrenreich, H., and Hass, K. C., Phys. Rev. B 40, 12346 (1989).Google Scholar
8. Young, P. M., Ehrenreich, H., Hui, P. M., and Hass, K. C., Phys. Rev. B 43, 2305 (1991).Google Scholar
9. Johnson, N. F., Ehrenreich, H., Hui, P.M., and Young, P. M., Phys. Rev. B 41, 3655 (1991).Google Scholar
10. Hass, K. C. and Ehrenreich, H., J. Vac. Technol. A 1.1678 (1983).Google Scholar
11. Volkov, B. A. and Pankratov, Q.A., Pis'ma Zh. Eksp. Teor. Fiz. 42, 145 (1985) [JETP Lett. 42, 1798 (1985)].Google Scholar
12. Suris, R.A., Fiz. Tekh. Poluprovodn. 20, 2008 (1986) [Sov. Phys. Semicond. 20, 1258 (1986)].Google Scholar
13. Agassi, D. and Korenman, V., Phys. Rev. B 37, 10095 (1988).Google Scholar
14. Chang, S.-K., Nurmikko, A. V., Wu, J.-W., Kolodziejski, L. A., and Gunshor, R. L., Phys. Rev. B 37, 1191 (1988).Google Scholar
15. Szczytko, J., Mac, W., Twardowski, A., Matsukura, F., and Ohno, H., Phys. Rev. B 59, 12935 (1999).Google Scholar
16. Hong, S. P., Yi, K. S., and Quinn, J. J., Phys. Rev. B 61, 13745 (2000).Google Scholar