Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:32:33.506Z Has data issue: false hasContentIssue false

Spin Polarized Low Energy Electron Microscopy of Surface Magnetic Structure

Published online by Cambridge University Press:  15 February 2011

M. S. Altman
Affiliation:
Physikalisches Institut der Technischen Universität Clausthal, D-3392 Clausthal-Zellerfeld, Federal Republic of Germany
H. Pinkvos
Affiliation:
Physikalisches Institut der Technischen Universität Clausthal, D-3392 Clausthal-Zellerfeld, Federal Republic of Germany
J. Hurst
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
H. Poppa
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
G. Marx
Affiliation:
Physikalisches Institut der Technischen Universität Clausthal, D-3392 Clausthal-Zellerfeld, Federal Republic of Germany
E. Bauer
Affiliation:
Physikalisches Institut der Technischen Universität Clausthal, D-3392 Clausthal-Zellerfeld, Federal Republic of Germany
Get access

Abstract

Spin polarized low energy electron microscopy (SPLEEM) has been developed for the high resolution imaging of surface magnetic structure. The existing LEEM ha.s been modified by the incorporation of a. GaAs-type spin polarized electron gun. Large image contrast arises due to the spin-dependent exchange scattering, whifle the st.in-orbit contribution vanishes uniquely for the normal incidence/exit geometry used here. Pixel by pixel image subtraction for incident electron beams of opposite polarization yields precisely the spatially resolved Bragg reflection asymmetry observed in spin polarized low energy electron diffraction. The shallow electron penetration depth arising from the strong coulombic interaction is advantageous for separating surface behavior from the normally overwhelning bulk. Therefore, the use of transversally polarizedI electron beams allows the determination of in-plane surface magnetization directions. Fnrthermore, the parallel illumination and detection of SPLEEM makes it possible to image quickly with a. resolution better than 500 Å in the present configuration. A useful and direct. comparison between surface magnetic, structural, and topological features is made possible by the augmentation of the unique imaging capabilities of conventional LEEM with the magnetic sensitivity of SPLEEM. In this manner, the magnetic domain structure of a Co (0001) surface and in-situ grown Co filmns on Mo(110) have been determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kirschner, J., Polarized Electrons at Surfaces (Springer-Verlag, Berlin, 1985).CrossRefGoogle Scholar
2. Feder, R.., edit.: Polarized Electrons in Surface Physics (World Scientific, Singapore, 1985).Google Scholar
3. Johnson, P.D., Clarke, A., Brookes, N.B., Hulbert, S.L., Sinkovic, B., and Smith, N.V., Phys. Rev. Lett. 61, 2257 (1988).Google Scholar
4. Donath, M., Appl. Phys. A 49, 351 (1989).CrossRefGoogle Scholar
5. Tamura, E.. and Feder, R.., Phys. R.ev. Lett. 57, 759 (1986).Google Scholar
6. Allenspach, R., Taborelli, M., amnd Landolt, M., Phys. Rcv. Lett. 55, 2599 (1985).Google Scholar
7. Mulhollan, G.A., Köymen, A.R., Lind, D.M., Bunning, F.B., Walters, G.K., Tamura, E., and Feder, R., Surf. Sci. 204, 503 (1988).CrossRefGoogle Scholar
8. Kirschner, J., Phys. Rev. B 30, 415 (1984).CrossRefGoogle Scholar
9. Kirschner, J., Surf. Sci. 138, 191 (1984).Google Scholar
10. Weller, D., Alvarado, S.F., Gudat, W., SchrOuml;der, K., and Campagna, M., Phys. Rev. Lett. 54, 1555 (1985).Google Scholar
11. Hartmann, M., J.Mag.Mag.Mat. 68, 298 (1987).Google Scholar
12. McFayden, I.R.., J. Appl. Phys. 64, 6011 (1988).CrossRefGoogle Scholar
13. Newbury, D.E. and Yakowiitz, H., in Practical Scanning Electron Microscopy, edited by Goldstein, J.I. and Yakowitz, H. (Plenum Press, New York, 1975), p. 180.Google Scholar
14. Mayer, H., J. Appl. Phys. 28, 975 (1957).CrossRefGoogle Scholar
15. Rave, W., Schafer, R., and Hubert, A., J. Mag. Mag. Mat. 65, 7 (1987).Google Scholar
16. Oepen, H.P. and Kirschner, J., Phys. Rev. Lett. 62, 819 (1989).CrossRefGoogle Scholar
17. Scheinfein, M.R., Unguris, J., Cellota, R.J., and Pierce, D.T., Phys. Rev. Lett. 63, 668 (1989).CrossRefGoogle Scholar
18. Unguris, J., Scheinfein, M.R., Celotta, R.J.., and Pierce, D.T., Appl. Phys. Lett. 55, 2553 (1989).CrossRefGoogle Scholar
19. Abraham, D.L. and Hopster, H., Phys. Rev. Lett. 58, 1352 (1987).CrossRefGoogle Scholar
20. Allenspach, R., Stampanoni, M., and Bischof, A., Phys. Rev. Lett. 65, 3344 (1990).CrossRefGoogle Scholar
21. Pierce, D., private communication.Google Scholar
22. Allenspach, R. and Bischof, A., Appl. Phys. Lett. 54, 587 (1989).CrossRefGoogle Scholar
23. Rugar, D., Mamin, F.J., Guethner, P., Lambert, S.E., McFadyen, I., aund Yogi, T., J. Appl. Phys. 68, 1169 (1990).Google Scholar
24. Wiesendanger, R., Güntherodt, H.-J., Güntherodt, G., amnd Ruf, R., Phys. Rev. Lett. 65, 247 (1990).Google Scholar
25. Bauer, E., in Chemistry and Physics of Solid Surfaces VIII, edited by Vanselow, R. and Howe, R. (Springer, Berlin, 1990), p. 267.CrossRefGoogle Scholar
26. Pierce, D.T., Cellota, R.J.., Wang, G.-C., Unertl, W.N., Galejs, A., Kuyatt, C.E., and Mielczarek, S.R., Rev. Sci. Instrum. 51, 478 (1978).Google Scholar
27. Altman, M.S., Marx, G., Pinkvos, H., Bauer, E., Hurst, J., and Poppa, H.., to be published.Google Scholar
28. Tikhov, M. and'Bauer, E., Surf. Sci. 232, 73 (1990).Google Scholar