Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:45:29.468Z Has data issue: false hasContentIssue false

Spin fluctuations, Fermi surface hotspots and nesting in PuCoGa5

Published online by Cambridge University Press:  01 May 2014

Matthias J. Graf
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Tanmoy Das
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Jian-Xin Zhu
Affiliation:
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

Surprisingly little is known about the mechanism and symmetry of superconducting pairing in PuCoGa5. A common thread with other unconventional superconductors is the presence of spin fluctuations in the normal state, which in this particular case is controlled by strong spin–orbit coupling split bands. The many and anisotropic Fermi surfaces make the guessing of the potential spin-fluctuation nesting vector and resulting symmetry of the pairing function a nontrivial task. To provide much needed guidance for the identification of the pairing symmetry in this multiband superconductor, we perform first-principles based magnetic spin susceptibility calculations to identify the dominant nesting vectors that potentially give rise to interband pairing with nodal d- or s±-wave gap functions.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sarrao, J. L. et al. ., Nature 420, 297 (2002).CrossRefGoogle Scholar
Curro, N. J. et al. ., Nature 434, 622 (2005).CrossRefGoogle Scholar
Sakai, H. et al. ., J. Phys. Soc. Jpn. 74, 1710 (2005).CrossRefGoogle Scholar
Oppeneer, P. M. et al. ., J. Alloys Compounds 444-445, 109 (2007).CrossRefGoogle Scholar
Opahle, I., Elgazzar, S., Koepernik, K., and Oppeneer, P. M., Phys. Rev. B 70, 104504 (2004).CrossRefGoogle Scholar
Shick, A. B. et al. ., Phys. Rev. B 83, 155105 (2011).CrossRefGoogle Scholar
Pourovskii, L. V., Katsnelson, M. I., and Lichtenstein, A. I., Phys. Rev. B 73, 060506 (2006).CrossRefGoogle Scholar
Daghero, D. et al. ., Nat. Commun. 3, 786 (2012).CrossRefGoogle Scholar
Ronning, F. et al. ., J. Phys. – Condens. Matter 24, 294206 (2012).CrossRefGoogle Scholar
Das, T., Zhu, J.-X., and Graf, M. J., arXiv:1311.6410 .Google Scholar
Scalapino, D. J., Rev. Mod. Phys. 84, 1383 (2012); G. R. Stewart, Rev. Mod. Phys. 56, 755(1984); P. S. Riseborough, G. M. Schmiedeshoff, and J. L. Smith, “Heavy Fermion Superconductivity” in Superconductivity – Conventional and Unconventional Superconductors, ed. K. H. Bennemann and J. B. Ketterson (Springer-Verlag, Berlin, 2008) Vol. II, 1031.CrossRefGoogle Scholar
Das, T., Zhu, J.-X., and Graf, M. J., Phys. Rev. Lett. 108, 017001 (2012).CrossRefGoogle Scholar
Blaha, P. et al. ., An augmented plane wave + local orbitals program for calculating crystal properties, (Schwarz, K., Tech. Universitat Wien, Austria, 2001).Google Scholar
Perdew, J. P., Burke, S., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Das, T., and Balatsky, A. V., Phys. Rev. Lett. 106, 157004 (2011).CrossRefGoogle Scholar
Das, T., Markiewicz, R. S., and Bansil, A., Phys. Rev. B 81, 174504 (2010).CrossRefGoogle Scholar
Das, T., Markiewicz, R. S., and Bansil, A., Phys. Rev. B 81, 184515 (2010).CrossRefGoogle Scholar
Baek, S. H. et al. ., Phys. Rev. Lett. 105, 217002 (2010).CrossRefGoogle Scholar
Bang, Y., Graf, M. J., Curro, N. J., and Balatsky, A. V., Phys. Rev. B. 74, 054514 (2006).CrossRefGoogle Scholar
Bang, Y., Graf, M. J., Curro, N. J., and Balatsky, A. V., Mater. Res. Soc. Symp. Proc. 893, (Warrendale, PA, 2006) 0893-JJ02-04.Google Scholar
Bang, Y., Graf, M. J., Curro, N. J., and Balatsky, A. V., J. Magn. Magn. Mater. 310, 634 (2007).Google Scholar