Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:42:34.907Z Has data issue: false hasContentIssue false

Spectroscopic Studies of a Superionic Plastic Phase Crystal: Lithium Sulfate

Published online by Cambridge University Press:  21 February 2011

Roger Frech*
Affiliation:
University of Oklahoma, Dept. of Chemistry, 620 Parrington Oval, Norman, OK 73019
Get access

Abstract

Temperature dependent Raman spectroscopic studies of single crystal lithium sulfate are summarized. Coupling between sulfate ion bending modes and the lithium ion translatory modes becomes weaker with increasing temperature until the lithium modes can no longer be observed above 250° C. The temperature interval above 450° in the monoclinic phase is marked by the onset of significant sulfate ion reorientational motion, as evidenced by the bandshape studies of the sulfate ion v1, mode and the librational modes. Bandshape analysis of the v3 mode in the plastic phase strongly suggests that the symmetry of the sulfate ion potential energy environment has planar anisotropy.

The lithium ion-sulfate ion interactions are modeled for correlated sulfate ion configurations as a function of lithium ion position. The results support the role of the octahedral site in lithium ion transitions contributing to the ionic conductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Albright, J. G., Z. Kristallogr. 84, 150 (1932).Google Scholar
2. Nord, A. G., Acta Crystallogr. Sect. B 32, 982 (1976).Google Scholar
3. Forland, T. and Krogh-Moe, J., Acta Chem. Scand. 11, 565 (1957).Google Scholar
4. Jansson, B. and Sjoblom, C. A., Z. Naturforsch. Teil A 25, 1115 (1970).CrossRefGoogle Scholar
5. Schroeder, K. and Sjoblom, C. A., High Temp. High Pressures 12, 327 (1980).Google Scholar
6. Cazzanelli, E., Fontana, A., Rocca, F. and Frech, R., Phys. Stat. Sol. (b) 140, 621 (1987).Google Scholar
7. Cazzanelli, E. and Frech, R., J. Chem. Phys. 81, 4729 (1984).Google Scholar
8. Frech, R. and Cazzanelli, E., Solid State Ionics 9 & 10, 95 (1983).Google Scholar
9. Cazzanelli, E. and Frech, R., J. Chem. Phys. 84, 626 (1986).Google Scholar
10. Nilsson, L., Thomas, J. O. and Tofield, B. C., J. Phys. C: Solid St. Phys. 13, 6441 (1980).Google Scholar
11. Kvist, A. and Bengtzelius, A. in Fast Ion Transuort in Solids, edited by Gool, W. von (North-Holland, Amsterdam, 1973), p.193.Google Scholar
12. Gundusharma, U. M., MacLean, C. and Secco, E. A., Solid State Commun. 57, 479 (1986).Google Scholar
13. Impey, R. W., Klein, M. L. and McDonald, I. R., J. Chem. Phys. 82, 4690 (1985).Google Scholar
14. Ewald, P. P., Ann. Phys. (Leipz.) 64, 253 (1921).Google Scholar
15. Kornfeld, H., Z. Phys. 22, 27 (1924).Google Scholar
16. Lunden, A., Bengtzelius, A., Kaber, R., Nilsson, L., Schroeder, K. and Tarneberg, R., Solid State Ionics 9 & 10, 89 (1983).Google Scholar