Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T10:23:50.713Z Has data issue: false hasContentIssue false

Spectroscopic Investigations of Mesoporous M41S Silica Phases

Published online by Cambridge University Press:  28 February 2011

Michael FrÖBa
Affiliation:
Lawrence Livermore National Laboratory, University of California, Chemistry & Materials Science Department, P.O. Box 808, L-369, Livermore, CA 94551, U.S.A.
P. Behrens
Affiliation:
Fakultät für ChemieUniversität Konstanz, D-78464 Konstanz, Germany Institut für Anorganische Chemie, Universität München, D-80333 München, Germany
Joe Wong
Affiliation:
Lawrence Livermore National Laboratory, University of California, Chemistry & Materials Science Department, P.O. Box 808, L-369, Livermore, CA 94551, U.S.A.
G. Engelhardt
Affiliation:
Institut für Technische Chemie I, Universität Stuttgart, D-70550 Stuttgart, Germany
CH. Haggen-Müller
Affiliation:
Fakultät für ChemieUniversität Konstanz, D-78464 Konstanz, Germany
G. Van De Goor
Affiliation:
Fakultät für ChemieUniversität Konstanz, D-78464 Konstanz, Germany
M. Rowen
Affiliation:
Stanford Synchrotron Radiation Laboratory, P.O. Box 4349, Stanford, CA 94309, U.S.A.
T. Tanaka
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan
W. Schwieger
Affiliation:
Sektion Chemie, Universität Halle-Wittenberg, D-06108 Halle/Saale, Germany
Get access

Abstract

Mesoporous silica phases of the M41S type were investigated by SiK XANES spectroscopy and the results compared with the information provided by 29Si MAS NMR spectroscopy. The results show that the pore walls are more ordered than in “truly” amorphous silica phases (as, e.g., glass) and indicate a relationship of their structure to layered silicates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., Nature 359, 710 (1992).Google Scholar
2. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T-W., Olson, D.H., Sheppard, E. W., McCullen, S.B., Higgins, J.B., Schlenker, J.L., J. Am. Chem. Soc. 114, 10834 (1992).Google Scholar
3. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., Chmelka, B.F., Science 261, 1299 (1993).Google Scholar
4. Stucky, G.D, Monnier, A., Schuth, F., Huo, Q., Margolese, D., Kumar, D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., Chmelka, B.F., Mol. Cryst. Liq. Cryst. 240, 187 (1994).Google Scholar
5. Behrens, P. and Stucky, G.D., Angew. Chem. Int. Ed. Engl. 32, 696 (1993).Google Scholar
6. Behrens, P., Adv. Mater. 5, 127 (1993).Google Scholar
7. Tanev, P.T., Chibwe, M., Pinnavaia, T.J., Nature 368, 312 (1994).Google Scholar
8. Corma, A., Navarro, M.T., Pariente, J. Pérez, J. Chem. Soc., Chem. Commun., 147 (1994).Google Scholar
9. Huo, Q., Margolese, D.I., Ciesla, U., Feng, P., Gier, T.E., Sieger, P., Leon, R., Petroff, P.M., Schiuth, F., Stucky, G.D., Nature 368, 317 (1994).Google Scholar
10. Alfredsson, V., Keung, M., Monnier, A., Stucky, G.D., Unger, K.K., Schuth, F., J. Chem. Soc., Chem. Commun., 921 (1994).Google Scholar
11. Chen, C.-Y., Li, H.-X., Davis, M.E., Microporous Mater. 2, 17 (1993);Google Scholar
Chen, C.-Y., Burkett, S.L., Li, H.-X., Davis, M.E., Microporous Mater. 2, 27 (1993).Google Scholar
12. Kolodziejski, W., Corma, A., Navarro, M.-T., Pérez-Pariente, J., Solid State Nuclear Magnetic Resonance 2, 253 (1993).Google Scholar
13. Akporiaye, D., Hansen, E.W., Schmidt, R., Stöcker, M., J. Phys. Chem. 98, 1926 (1994).Google Scholar
14. a) Wong, Joe, Shimkaveg, G., Goldstein, W., Eckart, M., Tanaka, T., Rek, Z.U., Tompkins, H., Nucl. Instrum. Meth. Phys. Res. A 291, 243 (1990);Google Scholar
b) Rowen, M., Rek, Z.U., Wong, Joe, Tanaka, T., George, G.N., Pickering, I.L., Via, G.H., Brown, G.E. Jr., Synchrotron Radiation News 6, 25 (1993).Google Scholar
15. Behrens, P., Engelhardt, G., Fröba, M., Haggenmüller, Ch., van de Goor, G., Wong, Joe, Rowen, M., Tanaka, T., Adv. Mater., to be submitted (1994).Google Scholar
16. Q" stands for a Si atom connected to n Si atoms via oxygen bridges.Google Scholar
17. Engelhardt, G. and Michel, D., High-Resolution Solid-State NMR of Silicates and Zeolites, (Wiley, Chichester, 1987).Google Scholar
18. a) Schwieger, W., Heidemann, D., Bergk, K.-H., Rev. Chem. Mineral. 22, 639 (1985);Google Scholar
b) Heidemann, D., Schwieger, W., Bergk, K.-H., Z. Anorg. AlIg. Chem. 555, 129 (1987);Google Scholar
c) Schwieger, W., Bergk, K.-H., Heidemann, D., Lagaly, G., Beneke, K., Z. Kristallogr. 197, 1 (1991).Google Scholar
19. Pinnavaia, T.J., Johnson, I.D., Lipsicas, M., J. Solid State Chem. 63, 118 (1986).Google Scholar
20. We cannot yet explain the occurence of Q2 Si atoms after calcination.Google Scholar
21. Wong, Joe, George, G.N., Pickering, I.J., Rek, Z.U., Rowen, M., Tanaka, T., Via, G.H., DeVries, B., Vaughan, D.E.W., Brown, G.E. Jr, Solid State Commun. 92, 559 (1994).Google Scholar
22. Lagarde, P., Flank, A.M., Tourillon, G., Liebermann, R.C., Itie, J.P., J. Phys. I France 2, 1043 (1992).Google Scholar
23. Davoli, I., Paris, E., Stizza, S., Fanfoni, M., Gargano, A., Bianconi, A., Seifert, F., Phys. Chem. Miner. 19, 171 (1992).Google Scholar