Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:58:40.299Z Has data issue: false hasContentIssue false

Spectroscopic Ellipsometry Analysis of InGaN/GaN and AlGaN/GaN Heterostructures Using a Parametric Dielectric Function Model

Published online by Cambridge University Press:  03 September 2012

J. Wagner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, [email protected]
A. Ramakrishnan
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
H. Obloh
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
M. Kunzer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
K. Köhler
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
B. Johs
Affiliation:
J. A. Woollam Co., Inc., 645 ‘M’ Street #102, Lincoln, Nebraska 68508
Get access

Abstract

Spectroscopic ellipsometry (SE) has been used for the characterization of AlGaN/GaN and InGaN/GaN heterostructures. The resulting pseudodielectric function spectra were analyzed using a multilayer approach, describing the dielectric functions of the individual layers by a parametric oscillator model. From this analysis, the dielectric function spectra of GaN, AlxGa1−xN (x≤0.16), and In0.13Ga0.87N were deduced. Further, the dependence of the AlxGa1−xN band gap energy on the Al mole fraction was derived and compared with photoluminescence data recorded on the same material. The SE band gap data are compatible with a bowing parameter close to 1 eV for the composition dependence of the AlxGa1−xN gap energy. Finally, the parametric dielectric functions have been used to model the pseudodielectric function spectrum of a complete GaN/AlGaN/InGaN LED structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pickering, C., Carline, R. T., Emeney, M. T., Garawal, N. S., and Howard, L. K., Appl. Phys. Lett. 60, 2412 (1992).Google Scholar
2. Herzinger, C. M., Yao, H., Snyder, P. G., Celli, F. G., Kao, Y.-C., Johs, B., and Woollam, J. A., J. Appl. Phys. 77, 4677 (1995); C. M. Herzinger, P. G. Snyder, F. G. Celli, Y.-C. Kao, D. Chow. B. Johs, and J. A. Woollam, J. Appl. Phys. 79, 2663 (1996).Google Scholar
3. Weimar, U., Wagner, J., Gaymann, A., and Köhler, K., Appl. Phys. Lett. 68, 3293 (1996).Google Scholar
4. Wagner, J., Schmitz, J., Herres, N., Tränkle, G., and Koidl, P., Appl. Phys. Lett. 70, 1456 (1997).Google Scholar
5. Logothetidis, S., Petalas, J., Cardona, M., and Moustakas, T. D., Phys. Rev. B 50, 18017 (1994).Google Scholar
6. Petalas, J., Logothetidis, S., Boultadakis, S., Alouani, M., and Wills, J. M., Phys. Rev. B 52, 8082 (1995).Google Scholar
7. Yu, G., Ishikawa, H., Umeno, M., Egawa, T., Watanabe, J., Jimbo, T., and Soga, T., Appl. Phys. Lett. 72, 2202 (1998).Google Scholar
8. Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S., and Ohtsuka, K., J. Appl. Phys. 82, 3528 (1997).Google Scholar
9. Djurisic, A. B. and Li, E. H., Appl. Phys. Lett. 73, 868 (1998); J. Appl. Phys. 85, 2848 (1999).Google Scholar
10. Djurisic, A. B., Rakic, A. D., Kwok, P. C. K., Li, E. H., Majewski, M. L., and Elazar, J. M., J. Appl. Phys. 86, 445 (1999).Google Scholar
11. Wagner, J., Ramakrishnan, A., Behr, D., Obloh, H., Kunzer, M., and Bachem, K.-H., Appl. Phys. Lett. 73, 1715 (1998).Google Scholar
12. Ochalski, T. J., Gil, B., Lefebvre, P., Grandjean, N., Leroux, M., Massies, J., Naka-mura, S., and Morkoc, H., Appl. Phys. Lett. 74, 3353 (1999).Google Scholar
13. Shan, W., Ager, J. W. III, Yu, K. M., Walukiewicz, W., Haller, E. E., Martin, M. C., McKinney, W. R., and Yang, W., J. Appl. Phys. 85, 8505 (1999).Google Scholar
14. Lee, S. R., Wright, A. F., Crawford, M. H., Petersen, G. A., Han, J., and Biefeld, R. M., Appl. Phys. Lett. 74, 3344 (1999).Google Scholar
15. Obloh, H., Behr, D., Herres, N., Hoffmann, C., Kunzer, M., Maier, M., Müller, S., Pletschen, W., Santic, B., Schlotter, P., Seelmann-E, M., Bachem, K.-H., and Kauf-mann, U., Proc. 2 nd Int. Conf. Nitride Semicond. (Tokushima, Japan, 1997), p. 258.Google Scholar
16. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).Google Scholar
17. Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
18. Wagner, J., Ramakrishnan, A., Behr, D., Maier, M., Herres, N., Kunzer, M., Obloh, H., and Bachem, K.-H., MRS Internet. J. Nitride Semicond. Res. 4S1, G2.8 (1999).Google Scholar
19. Steude, G., Meyer, B. K., Göldner, A., Hoffmann, A., Bertram, F., Christen, J., Amano, H., and Akasaki, I., Appl. Phys. Lett. 74, 2456 (1999).Google Scholar
20. Koide, Y., Itoh, H., Khan, M. R. H., Hiramatu, K., Sawaki, N., and Askasaki, I., J. Appl. Phys. 61, 4540 (1987).Google Scholar