Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:31:16.231Z Has data issue: false hasContentIssue false

Spectral Diffusion of Ultra-Narrow Fluorescence Spectra in Single Quantum Dots

Published online by Cambridge University Press:  15 February 2011

S. A. Empedocles
Affiliation:
Chemistry Department, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, Ma. 02138
D. J. Norris
Affiliation:
Chemistry Department, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, Ma. 02138
M. G. Bawendi
Affiliation:
Chemistry Department, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, Ma. 02138
Get access

Abstract

We collect and spectrally resolve photoluminescence from single CdSe nanocrystallite quantum dots. By eliminating spectral inhomogeneities, we reveal resolution limited linewidths < 120μev at 10K. These lines are more than fifty times narrower than what has previously been reported using ensemble measurements. Light driven spectral diffusion is seen as a form of power broadening and may be the cause of surprisingly broad linewidths at room temperature. In addition, we see no evidence of excited state emission or coupling to acoustic phonons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Efros, A.I.L. and Efros, A.L., Sov. Phys. Semicond. 16(7), 772 (1982).Google Scholar
Brus, L.E., J. Chem. Phys. 80, 4403 (1984).Google Scholar
2Norris, D.J. and Bawendi, M.G., Phys. Rev. B 53, 16338 (1996).Google Scholar
Noms, D.J. et al. , Phys. Rev. B 53, 16347 (1996).Google Scholar
3Efros, A.I.L. et al. , Phys. Rev. B 54(7), 1 (1996).Google Scholar
4Weisbuch, , J. of Cryst. Growth 138, 776 (1994).Google Scholar
5Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115(19), 8706 (1993).Google Scholar
6Danek, M., Jensen, K.F., Murray, C.B., and Bawendi, M.G., J. Cryst. Growth 145, 714 (1994); Chem. Mater. 8(1), 173 (1996).Google Scholar
7Kagan, C.R., Murray, C.B., Ninnai, M., and Bawendi, M.G., Phys. Rev. Lett. 76(9), 1517 (1996).Google Scholar
8Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science 270, 1335 (1995).Google Scholar
9Alivisatos, A.P. et al. , Nature 382, 609 (1996).Google Scholar
10Alivisatos, A.P. et al. , J. Chem. Phys. 90(7), 3463 (1989).Google Scholar
11Blanton, S.A., Dehestani, A., Lin, P., and Guyot-Sionnest, P., Chem. Phys. Lett 229, 317 (1994).Google Scholar
12Leon, R., Petroff, P.M., Leonard, D., and Fafard, S., Science 267, 1966 (1995).Google Scholar
13Moerner, W.E., Science 265, 46 (1994) and references therein.Google Scholar
14Trautman, J.K., Macklin, J.J., Brus, L.E., and Betzig, E., Nature 369, 40 (1994).Google Scholar
15Empedocles, S.A., Norris, D.J. and Bawendi, M.G., Phys. Rev. Lett. 77(18), 3873 (1996).Google Scholar
16Dabbousi, B.O. et al. , (to be published).Google Scholar
17Hines, M.A. and Guyot-Sionnest, P., J. Phys. Chem. 100(2), 468 (1996).Google Scholar
18Nirmal, M. et al. , Nature 383, 802 (1996).Google Scholar
19 Individual linewidths at any given intensity vary, with most SDF spectra dropping below the background before reaching the resolution limit. As a result, the narrowest lines are observed in overcoated dots. This is most likely a result of higher fluorescence efficiency and not inherently narrower linewidths.Google Scholar
20Berg, M. et al. , Chem. Phys. Lett. 139(1), 66 (1987).Google Scholar
21Sacra, A., “Stark Spectroscopy of CdSe Nanocrystallites”, Ph.D. Thesis (Dept. of Chemistry, Massachusetts Institute of Technology, Cambridge, Ma. 1996).Google Scholar