Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:20:03.703Z Has data issue: false hasContentIssue false

Spectral Control of Thermal Radiation by Metallic Surface Relief Gratings

Published online by Cambridge University Press:  31 January 2011

Hitoshi Sai
Affiliation:
[email protected], AIST, Central 2, 1-1-1, Umezono, Tsukuba, 3058568, Japan
Yoshiaki Kanamori
Affiliation:
[email protected], Tohoku University, Sendai, Miyagi, Japan
Kengo Watanabe
Affiliation:
[email protected], Tohoku University, Sendai, Miyagi, Japan
Hiroo Yugami
Affiliation:
[email protected], Tohoku University, Sendai, Miyagi, Japan
Get access

Abstract

The microcavity effect of two-dimensional W surface-relief gratings has been investigated by means of the finite-difference time-domain simulation. The peak structure of the spectral emissivity of W gratings with a number of microcavities is in good agreement with the spectral features of a single microcavity. This result shows that the emissivity enhancement by W gratings with microcavities is mainly attributable to the microcavity effect that arises from each microcavity. It is that the spectral emissivity can be controlled by a combination of several microcavities with different parameters, and that not only a rectangular but a cylindrical microcavity also shows the microcavity effect according to its cavity modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hesketh, P.J. Zemel, J.N. and Gebhart, B.: Nature 324 (1986) 549.Google Scholar
2 Zemel, J.N.: Comment. Mod. Phys. B 14 (1988) 1.Google Scholar
3 Hesketh, P.J. Zemel, J.N. and Gebhart, B.: Phys. Rev. B 37 (1988) 10795.Google Scholar
4 Hesketh, P.J. Zemel, J.N. and Gebhart, B.: Phys. Rev. B 37 (1988) 10801.Google Scholar
5 Kreiter, M. Oster, J. Sambles, R. Herminghaus, S. Mitter-Neher, S. and Knoll, W.: Opt. Commun. 168 (1999) 117.Google Scholar
6 Heinzel, A. Boerner, V. Gombert, A. Blasi, B. Wittwer, V. and Luther, J.: J. Mod. Opt. 47 (2001) 2399.Google Scholar
7 Sai, H. Yugami, H. Akiyama, Y. Kanamori, Y. and Hane, K.: J. Opt. Soc. Am. A 18 1(2001) 471.Google Scholar
8 Kusunoki, F. Takahara, J. and Kobayasi, T.: Electron. Lett. 39 (2003) 23.Google Scholar
9 Marquier, F. Joulain, K. Mullet, J.P. Carminati, R. and Greffet, J.-J.: Opt. Commun. 237 (2004) 379.Google Scholar
10 Maruyama, S. Kashiwa, T. Yugami, H. and Esashi, E.: Appl. Phys. Lett. 79 (2001) 1393.Google Scholar
11 Sai, H. Kanamori, Y. and Yugami, H.: Appl. Phys. Lett. 82 (2003) 1685.Google Scholar
12 Sai, H. and Yugami, H.: Appl. Phys. Lett. 85 (2004) 3399.Google Scholar
13 Kusunoki, F. Kohama, T. Hiroshima, T. Fukumoto, S. Takahara, J. and Kobayashi, T.: Jpn. J. Appl. Phys. 43 (2004) 5253.Google Scholar
14 Greffet, J.-J. Carminati, R. Joulian, K. Mulet, J.-P. Mainguy, S. and Chen, Y.: Nature 416 (2002) 61.Google Scholar
15 Marquier, F. Joulain, K. Mulet, J.-P. Carminati, R. and Greffet, J.-J.: Phys. Rev. B 69 (2004) 155412.Google Scholar
16 Sai, H. Kanamori, Y. Hane, K. and Yugami, H.: J. Opt. Soc. Am A 22 (2005) 1805.Google Scholar
17 Miyazaki, H. T. Ikeda, K. Kasaya, T. Yamamoto, K. Inoue, Y. Fujimura, K. Kanakugi, T. Okada, M., Hatade, K. and Kitagawa, S. Appl. Phys. Lett. 92 (2008) 141114.Google Scholar
18 Ikeda, K. H. Miyazaki, T. Kasaya, T. Yamamoto, K. Inoue, Y. Fujimura, K. Kanakugi, T. Okada, M., Hatade, K. and Kitagawa, S. Appl. Phys. Lett. 92 (2008) 021117.Google Scholar
19 Lin, S. Y. Moreno, J. Fleming, J. G. Appl. Phys. Lett. 83 (2003) 380.Google Scholar
20 Celanovic, I. Perreault, D., Kassakian, J. Phys. Rev. B 72 (2005). 075127.Google Scholar
21 Waymouth, J. F. U.S., patent No.5079473 (1992).Google Scholar
22 Licciulli, A. Diso, D. Torsello, G. Tundo, S. Maffezzoli, A. Lomascolo, M. and Mazzer, M.: Semicon. Sci. Technol. 18 (2003) S174.Google Scholar
23 Taflove, A. and Hagness, S.C.: Computational electrodynamics – the finite- difference time-domain method (Artech House, Boston and London, 2000) 2nd ed.Google Scholar
24 Dionne, J. A. Sweatlock, L. A. and Atwater, H. A. Phys. Rev. B 73 (2006) 035407.Google Scholar
25 Kurokawa, Y. Miyazaki, H.T. Phys. Rev. B 75 (2007) 035411.Google Scholar
26 Lynch, D.W. and Hunter, W.R. Handbook of Optical Constants of Solids, ed. Palik, E.D. (Academic Press, San Diego, 1998) p. 357.Google Scholar
27 Greffet, J.-J. and Nieto-Vesperinas, M.: J. Opt. Soc. Am. A 15 (1998) 2735.Google Scholar
28 Dearholt, D.W. and McSpadden, W.R. Electromagnetic Wave Propagation (McGraw-Hill, New York, 1973) chapter 7.Google Scholar