Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T08:59:09.007Z Has data issue: false hasContentIssue false

Specimen Cage Modification for Tem in-Situ Shearing

Published online by Cambridge University Press:  21 February 2011

Annemarie Meike*
Affiliation:
Earth Sciences Division, Lawrence Berkeley Laboratory, University of California Berkeley, California 94720
Get access

Abstract

In-situ strain experiments with the electron microscope have contributed substantially to our understanding of deformation in metals and ceramics. However, physical characteristics of rock-forming minerals limit the direct application of experimental procedures developed for metals. The minerals muscovite (KAl2(Si3Al)O10(OH,F)2) and biotite (K(Mg0.6–1.8 Fe2.4–1.2) (Si3Al)O10 (OH,F)2) are chosen to develop techniques for preliminary deformation experiments. The present communication describes modifications of sample preparation techniques for micas. The standard tensile straining configuration is altered to a simple shear geometry by means of an intermediary specimen cage to allow the use of a more favorable sample orientation. The extension of the shearing geometry to the in-situ deformation of other rock-forming minerals is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Imura, T., Hashimoto, H. (eds.), Proc. Fifth Int. Conf. on High Voltage Electron Microscopy, Kyoto, J. Electron Microscopy 26 (1977).Google Scholar
2. Richter, U. (ed.), Proc. Int. Symposium, In-Situ High Voltage Electron Microscopy: Application to Plasticity and Further Topics of Materials Research, Kristall und Technik 14 (11), 11711417 (1979).Google Scholar
3. Etheridge, M. A., Hobbs, B. E., Paterson, M. S., Contr. Mineral. Petrol. 38, 2136 (1973).Google Scholar
4. Bell, I. A., and Wilson, C. J., Tectonophys. 78, 201228 (1981).CrossRefGoogle Scholar
5. Wilson, C., Tectonophys. 127, 4965 (1986).CrossRefGoogle Scholar
6. Schmid, E., in Proc. Int. Congr. Appl. Mech. Delft, 1924, 342 (1928).Google Scholar
7. Campany, R. E., Loretto, M. H., Smallman, R. E., Metal Science, 253 (1976).Google Scholar
8. Mügge, O., Neus. Jahrb. Mineral. Geol. Paläontol. 1, 71158 (1898).Google Scholar
9. Ackland, D. (private communication).Google Scholar
10. Franks, F., Vacuum 34, 259261 (1984).CrossRefGoogle Scholar
11. Nabarro, F. R. N., Theory of Dislocations, (Oxford University Press, London, 1967) 821 p.Google Scholar
12. Messerschmidt, U., Appel, F., Kristall und Technilk 14 (11), 13311337. (1979).Google Scholar
13. Honeycombe, R. W. K., (1984), The Plastic Deformation of Metals, 3d ed., (Butler and Tanner, Ltd., London), 483 p.Google Scholar