Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:22:21.387Z Has data issue: false hasContentIssue false

Spatial Distribution Analyses of Superconducting Transition Temperature in Epitaxial YBa2Cu3O7 Film Using Variable Temperature Scanning Laser Microscopy

Published online by Cambridge University Press:  18 March 2011

S. Seo
Affiliation:
Department of Physics and Astronomy, California State University-Long Beach, Long Beach, CA 90840, U.S.A.
C. Kwon
Affiliation:
Department of Physics and Astronomy, California State University-Long Beach, Long Beach, CA 90840, U.S.A.
B. H. Park
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Q. X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

The spatial distribution of superconducting properties using variable temperature scanning laser microscope (VTSLM) has been investigated. The superconducting thin film used in this study is an epitaxial YBa2Cu3O7 film photolithographically patterned to a 300 μm-wide bridge. Since the voltage response, δV(x,y) is proportional to dR/dT(x,y), the spatial distribution of superconducting transition can be obtained in VTSLM images. In the resistive transition region, there is a strong correlation between the VTSLM images and the resistance of the sample. With decreasing resistance, the area with large δV(x,y) shifts toward the ends of the bridge. This indicates that the resistive transition is not uniform and both ends of the bridge have lower transition temperature, Tc. Different currents or different output power of lasers do not affect the images. VTSLM technique is a powerful tool to image the local superconducting properties and to identify the weaker superconducting areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gaevski, M. E., Bobyl, A. V., Shantsev, D. V., Galperin, Y. M., Johnsen, T. H., Baziljevich, M., Bratsberg, H., and Karmanenko, S. F., Phys. Rev. B59, 9655 (1999)Google Scholar
2. Indenbom, M. V., Beek, C. J. van der, Konczykowski, M., and Holtzberg, F., Phys. Rev. Lett., 1792 (2000).Google Scholar
3. Albrecht, J., Joose, Ch., Worthomann, R., Forkl, A., and Kronmuller, H., Phys. Rev.B 57, 10332 (1998).Google Scholar
4. Feldmann, D. M., Reeves, J. L., Polynskii, A. A., Goyal, A., Feenstra, R., Lee, D. F., Paranthaman, M., Kroeger, D. M., Christen, D. K., Babcock, S. E., and Larbalestier, D. C., to be published in IEEE Trans. Appl. Supercd.Google Scholar
5. Feldmann, D. M., Reeves, J. L., Polynskii, A. A., Kozlowski, G., Biggers, R. R., Nekkanti, R. M., Maartense, I., Tomsic, M., Barnes, P., Oberly, C. E., Peterson, T. L., Babcock, S. E., and Larbalestier, D. C., Appl. Phys. Lett. 77, 2906 (2000)Google Scholar
6. Karapetrov, G., Cambel, V., Kwok, E. K., Nikolova, R., Crabtree, G. W., Zheng, H., and Veal, B. W., J., Appl. Phys. 86, 6282 (1999).Google Scholar