Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:48:19.224Z Has data issue: false hasContentIssue false

Space-Charge-Enhanced Post-Transit-Currents in A-Si:H

Published online by Cambridge University Press:  16 February 2011

F. Schauer
Affiliation:
Department of Physics, Chemical Faculty, Technical University of Brno, Žižkova 17, Brno CS-60200, Czech Republic
A. Eliat
Affiliation:
Laboratorium voor Halfgeleiderfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
M. Nesládek
Affiliation:
Material Physics Division, Institute for Materials Research, Limburg University Centre, Campuslaan, B-3590 Diepenbeek, Belgium
G.J. Adriaenssens
Affiliation:
Laboratorium voor Halfgeleiderfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
L.M. Stals
Affiliation:
Material Physics Division, Institute for Materials Research, Limburg University Centre, Campuslaan, B-3590 Diepenbeek, Belgium
Get access

Abstract

The space-charge-limited current mode in the post-transit time-of-flight method was used to determine the density of states (DOS) in the band gap of a-Si:H. SCLC conditions result in an enhancement of the occupancy of deep states, leading consequently to an improved sensitivity. In comparison with the small signal case, the emission time of deep traps changes as a function of the time dependent occupancy of traps. The change in the emission time of traps is explained by consideration of the deep defect relaxation concept.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schauer, F., Eliat, A., Nesládek, M., and Adriaenssens, G.J., to be published in Appl. Phys. Lett.Google Scholar
2. Cohen, J.D., Leen, T.M., and Rasmussen, R.J., Phys. Rev. Lett. 69, 3358 (1992).Google Scholar
3. Zhong, Fan, and Cohen, J.D., Phys. Rev. Lett. 71, 597 (1993).Google Scholar
4. Cohen, J.D., Leen, T.M., and Zhong, Fan, J. Non-Cryst. Solids 164–166, 327 (1993).Google Scholar
5. Kooka, J., proceedings of the 7th Intern. School on Cond. Matter Phys., Varna, September 1992, edited by Marshall, J.M., Kirov, N. and Vavrek, A. (World Scientific, Singapore, 1993) p. 129.Google Scholar
6. Seynhaeve, G.F., Barclay, R.P., Adriaenssens, G.J. and Marshall, J., Phys. Rev. B, 39, 10196 (1989).CrossRefGoogle Scholar
7. Nesládek, M., Schauer, F., Brada, P., Adriaenssens, G.J., and Stalš, L.M., J. Non -Cryst. Solids 164–166, 505 (1993).Google Scholar
8. Antoniadis, H., and Schiff, E.A., Phys. Rev. B, 46, 9482 (1992).Google Scholar
9. Spear, W.E., Amorphous Silicon and Related Materials, edited by Fritzsche, H., (World Scientific, Singapore, 1989), pp. 721766.Google Scholar
10. Han, Daxing, Melcher, D.C., Schiff, E.A., and Silver, M., Phys. Rev. B, 48, 8658 (1993).CrossRefGoogle Scholar