Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T01:21:09.938Z Has data issue: false hasContentIssue false

Solvothermal processes in Materials Synthesis

Published online by Cambridge University Press:  15 February 2011

Gérard Demazeau
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-UPR.CNRS 9048) 87, Avenue du Docteur Albert Schweitzer, 33608 Pessac cedex, France. Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB) 16 Avenue Pey Berland, 33607 Pessac cedex, France. Université BORDEAUX 1 « Sciences and Technologies » 351 Cours de la Libération, 33405 Talence Cedex, France.
Graziella Goglio
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-UPR.CNRS 9048) 87, Avenue du Docteur Albert Schweitzer, 33608 Pessac cedex, France. Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB) 16 Avenue Pey Berland, 33607 Pessac cedex, France. Université BORDEAUX 1 « Sciences and Technologies » 351 Cours de la Libération, 33405 Talence Cedex, France.
Alain Largeteau
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-UPR.CNRS 9048) 87, Avenue du Docteur Albert Schweitzer, 33608 Pessac cedex, France. Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB) 16 Avenue Pey Berland, 33607 Pessac cedex, France. Université BORDEAUX 1 « Sciences and Technologies » 351 Cours de la Libération, 33405 Talence Cedex, France.
Get access

Abstract

A solvothermal reaction can be described as a chemical reaction involving a solvent either in subcritical or supercritical conditions between different precursors. Such a solvent can act as a chemical component or a fluid phase able, through its physico-chemical properties, to induce the synthesis reactions. During the last fifteen years, solvothermal reactions have been used in different scientific areas involving basic or applied research. Several domains have been developed in Materials Chemistry: (i) the synthesis of novel materials, (ii) the development of new low temperature processes able to prepare functional materials, and in Materials Science: (i) new crystal growth processes, (ii) thin film deposition and (iii) sintering processes at low temperature. In Materials Chemistry three illustrations are described: (i) the synthesis through “geomimetism” of a new family of layered oxides: the phyllosiloxides, (ii) the synthesis of inorganic-organic materials, (iii) the potential of solvothermal processes for producing c-BN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cheetham, A. K., Ferey, G. and Loiseau, Th., Angew. Chem. Int. Ed. 38, 3268 (1999).Google Scholar
2 Li, J., Chen, Z., Wang, R. J. and Proserpio, D. M., Coordination Chemistry Reviews 190-192, 707 (1999).Google Scholar
3 Demazeau, G., J. Mater. Chem. 9, 15 (1999).Google Scholar
4 Demazeau, G., Gonnet, V., Solozhenko, V., Tanguy, B. and Montigaud, H., C.R. Acad. Sc.320 (IIb), 419 (1995).Google Scholar
5 Yu, S. H., J. Ceram. Soc. Jap. 109 (5), 565 (2001).Google Scholar
6 Denis, A., Goglio, G. and Demazeau, G., J. Crystal Growth (Submitted)Google Scholar
7 Yanagisawa, K., Sasaki, M., Nishioka, A., Ioku, K. and Yamasaki, N., J. Mater. Sci. Lett. 13, 765 (1994).Google Scholar
8 Yoshimura, M., Urushimara, W., Yashima, M. and Kakihana, M., Intermetallics 3, 125 (1995).Google Scholar
9 Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B. and Jielek, E., Physica C: Superconductivity 160, 449 (1989).Google Scholar
10 Demazeau, G., Reig, P. and Naslain, R., Mat. Rech. 10, 57 (1995).Google Scholar
11 Reig, P., Thesis “Les Phyllosiloxydes: de nouveaux matériaux d'interphase lamellaires tout-oxyde pour matériaux composites « (co-direction avec R. NASLAIN - 50%) Soutenue le 12 mai 1995.Google Scholar
12 Reig, P., Demazeau, G. and Naslain, N., J. Mat. Sci. 32, 4189 (1997).Google Scholar
13 Reig, P., Demazeau, G. and Naslain, N., J. Mat. Sci. 32, 4195 (1997).Google Scholar
14 Hong, K. P., Goglio, G., Presniakov, I. and Demazeau, G., High Pressure Research 22, 559 (2002).Google Scholar
15 Hong, K. P., Goglio, G., Demazeau, G. and Jung, D. Y., Defect and Diffusion Forum 208-209, 251 (2002).Google Scholar
16 Fu, W., Shi, Z., Li, G., Zhang, D., Dong, W., Chen, X. and Feng, S., Solid State Sciences 6, 225 (2004).Google Scholar
17 Mandal, S., Kavitha, G., Narayana, C. and Natarajan, S., J. Solid State Chem. 177, 2198 (2004).Google Scholar
18 Chen, Z., Wang, R. J., Huang, X.Y. and Li, J., Acta Cryst. C56, 1100 (2000).Google Scholar
19 Li, J., Chen, Z., Lam, K. C., Mulley, S. and Proserpio, D. M., Inorg. Chem. 36, 684 (1997).Google Scholar
20 Wentorf, R. H. Jr , J. Chem. Phys. 26, 956 (1957).Google Scholar
21 Vel, L., Demazeau, G., Etourneau, J., Materials Science and Engineering Solid State Materials for Advanced Technology 310, 149 (1991).Google Scholar
22 Solozhenko, V., Zh. Fir. Khim. 62, 3145 (1988).Google Scholar
23 Maki, J., Ikawa, H. and Fukunaga, O., “New Diamond Science and Technology” Messier, R., Glass, J. T., Butler, J. R. and Roy, R. Ed. MRS (1991), pp. 1051 Google Scholar
24 Wang, A., Capitain, F., Monnier, V., Matar, S. and Demazeau, G., J. Mater. Synthesis and Processing 5, 235 (1997).Google Scholar
25 Hao, X. P., Cui, D. L., Shi, G. X., Xu, X.G., Wang, J. Y., Jiang, M. H., Xu, X. W., Li, X. P. and Sun, B. Q., Chem. Mater 13, 2457 (2001).Google Scholar
26 Yu, M., Li, K., Lai, Z., Cui, D., Hao, X., Jiang, M. and Wang, Q., J. Crystal Growth 269, 570 (2004).Google Scholar
27 Dong, S., Hao, X., Xu, X., Cui, D. and Jiang, M., Mater. Lett. 58, 2791 (2004).Google Scholar
28 Hao, X., Zhan, J., Fang, W., Cui, D. and Xu, X., J. Cryst. Growth 270, 192 (2004).Google Scholar
29 Chen, L., Gu, Y., Li, Z., Qian, Y., Yang, Z. and Ma, J., J. Cryst. Growth 273, 646 (2005).Google Scholar