Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:16:21.069Z Has data issue: false hasContentIssue false

Solidification of TiAl-based alloys

Published online by Cambridge University Press:  28 August 2018

Ulrike Hecht
Affiliation:
Access e.V., Intzestr. 5, 52072 Aachen, Germany (email: [email protected])
D. Daloz
Affiliation:
LSG2M, Ecole des Mines de Nancy, 54042 Nancy Cedex, France
J. Lapin
Affiliation:
Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3, Slovak Republic
A. Drevermann
Affiliation:
Access e.V., Intzestr. 5, 52072 Aachen, Germany (email: [email protected])
V.T. Witusiewicz
Affiliation:
Access e.V., Intzestr. 5, 52072 Aachen, Germany (email: [email protected])
J. Zollinger
Affiliation:
Access e.V., Intzestr. 5, 52072 Aachen, Germany (email: [email protected])
Get access

Abstract

Titanium aluminides containing high niobium additions emerged as an attractive alloy family for automotive and aero-engine applications. Their processing by near net shape casting is rather demanding, not only due to easy contamination but also due to the fact that microstructure formation during solidification and subsequent solid state transformations sensitively depends on alloy composition and the applied processing conditions. The sequence of phase formation during solidification of the ternary alloy Ti-45Al-8Nb was analyzed based on non-equilibrium thermodynamic calculations and solidification experiments. This alloy solidifies completely via the β(Ti) phase, because the nucleation undercooling for the α(Ti) phase is high enough to prevent its formation. Thermodynamic calculations and experiments are shown to converge at last, with only minor improvements being necessary to correctly describe the metastable eutectic reaction “Liquid → β(Ti) + γ-TiAl” that occurs at the end of the solidification path.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jarvis, D.J., Voss, D., Mater. Sci. Eng. A 413–414 (2005) 583591.Google Scholar
[2] Witusiewicz, V., Bondar, A., Hecht, U., Rex, S., Velikanova, T., J. Alloys Comp. (in press), doi:10.1016/j.jallcom.2008.05.008Google Scholar
[3] Servant, C. and Ansara, I., Ber. Bunsenges. Phys. Chem. 102 (1998), pp. 11891205.Google Scholar
[4] Saunders, N. in: Ansara, I., Dinsdale, A.T. and Rand, M.H., Editors, COST 507: Thermochemical Database for Light Metal Alloys vol. 2, European Communities, Brussels and Luxembourg (1998), pp. 342345.Google Scholar
[5] Shuleshova, O., D. Holland-Moritz, W. Löser, A.Voss, Hartmann, H., Hecht, U., Witusiewicz, V. T., Herlach, D. M., B. Büchner, submitted to Acta Mat.Google Scholar
[6] Witusiewicz, V.T., Bondar, A.A., Hecht, U., Rex, S., Velikanova, T.Ya., J. Alloys Comp. 465 (2008) 6477.Google Scholar
[7] Scheil, E., Z. Metallkd. 34 (1942) 70.Google Scholar
[8] Sundman, B., Jansson, B. and Andersson, J.-O., CALPHAD 9 (1985) 153190.Google Scholar
[9] Lapin, J., Tech. Rep., IMPRESS (2007).Google Scholar
[10] Zollinger, J., Witusiewicz, V., Drevermann, A., Daloz, D., Hecht, U., Int. J. Cast. Met. Res., in press.Google Scholar
[11] Gungor, M. N., Metall.Trans. 20 A (1989) 25292533.Google Scholar
[12] Hazotte, A., Lecomte, J., Lacaze, J., Mater. Sci. Eng. A 413-414 (2005) 223228.Google Scholar
[13] Ganesan, M., Dye, D., Lee, P., Metall. Mat. Trans. 36 A (2005) 21912203.Google Scholar
[14] Hazotte, A., Lacaze, J., Trans. Indian. Inst. Met. 60 (2007) 267271.Google Scholar
[15] Hecht, U., Witusiewicz, V., Drevermann, A., Zollinger, J., Intermetallics 16 (2008) 969978.Google Scholar
[16] Burgers, W.G., Physica 1 (1934) 56186.Google Scholar