Published online by Cambridge University Press: 15 February 2011
Polycrystalline zirconia-coated single crystal sapphire fiber displays reconstruction of the sapphire surface in regions of contact with zirconia grains. This is a concern where ZrO2 -coated sapphire fiber is desired for reinforcement of ceramic matrices. Previous work has demonstrated pitting is partially attributed to impurity-induced transient liquid phase formation with local dissolution of alumina; however, the extent of reconstruction witnessed via microscopy suggests that other mechanisms are active. The present study has addressed the issue of solid solubility and interdiffusivity to more thoroughly understand the solid state mechanisms contributing to pitting. Single crystal sapphire and zirconia were ion implanted with zirconium and yttrium, and aluminum, respectively, and then subjected to diffusion anneals at 1200° - 1600°C to study redistribution of implanted cations. Secondary Ion Mass Spectroscopy (SIMS) was used to profile the redistribution of implanted ions for measurement of diffusion coefficients and solubility limits after heat treatments. The results will offer a significant set of data on interface stability in the alumina/zirconia system.