Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:49:16.411Z Has data issue: false hasContentIssue false

Solid Phase Epitaxy of UHV-Deposited Amorphous Si Over Recessed SiO2 Layer

Published online by Cambridge University Press:  25 February 2011

M. Tabe
Affiliation:
Atsugi Electrical Communication Laboratory, NTT, 1839-Ono, Atsugi-shi, Kanagawa 243-01, Japan.
Y. Kunii
Affiliation:
Atsugi Electrical Communication Laboratory, NTT, 1839-Ono, Atsugi-shi, Kanagawa 243-01, Japan.
Get access

Abstract

Lateral solid phase epitaxy (L-SPE) of ultra-high-vacuum (UHV) deposited amorphous Si (a-Si) over patterned SiO2 has been studied to produce monocrystalline silicon-on-insulator (SOI) films. When employing UHV-deposited a-Si, it is essential for L-SPE to reduce step height at the pattern boundary. This is because low density a-Si including columnar voids is formed at the step wall by the self-shadowing effect and SPE region does not extend across the low density a-Si area. L-SPE growth distance of 7 μm was achieved by low temperature annealing (575°C, 20 hr) on a planar substrate with recessed SiO2 patterns. Another deposition technique of a-Si for SPE, i.e., chemical vapor deposition is reviewed for comparison.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohmura, Y., Matsushita, Y. and Kashiwagi, M., Jpn.J.Appl.Phys., 21, L152 (1982).Google Scholar
2. Kunii, Y., Tabe, M. and Kajiyama, K., J.Appl.Phys., 54, 2847 (1983).Google Scholar
3. Ishiwara, H., Yamamoto, H., Furukawa, S., Tamura, M. and Tokuyama, T., Appl.Phys.Lett., 43, 1028(1983).Google Scholar
4. Roth, J.A., Mat. Res. Soc. Symp., ABSTRACTS p.48 (1983).Google Scholar
5. Kennedy, E.F., Csepregi, L., Mayer, J.W. and Sigmon, T.W., J.Appl.Phys., 48, 4241(1977).Google Scholar
6. Kunii, Y., Tabe, M. and Kajiyama, K., Jpn.J.Appl.Phys., 21, 1431(1982).Google Scholar
7. Ban, Y., Tsuchikawa, H. and Maeda, K., Semiconductor Silicon (Abstract of Electrochem. Soc. Meeting, 1973), p.292.Google Scholar
8. Brodsky, M.H., Title, R.S., Weiser, K. and Pettit, G.D., Phys.Rev., B1, 2632 (1970).Google Scholar
9. Csepregi, L., Kennedy, E.F., Mayer, T.W. and Sigmon, T.W., J.Appl.Phys., 49, 3906 (1978).Google Scholar
10. Joyce, B.A., Bradley, R.R. and Booker, G.R., Phil.Mag., 15, 1167 (1967).Google Scholar
11. Tabe, M., Arai, K. and Nakamura, H., Jpn.J.Appl.Phys., 20, 703(1981).Google Scholar
12. Tabe, M., Jpn.J.Appl.Phys., 21, 534(1982).Google Scholar
13. Henderson, R.C., Marcus, R.B. and Polito, W.J., J.Appl.Phys., 42, 1208(1971).Google Scholar
14. Henderson, R.C., J.Electrochem.Soc., 119, 772(1972).Google Scholar
15. Saitoh, S., Sugii, T., Ishiwara, H. and Furukawa, S., Jpn.J.Appl.Phys., 20, L130(1981).Google Scholar
16. Olson, G.L., Roth, J.A. and Hess, L.D., Proceedings of the U.S.-Japan Seminar on Solid Phase Epitaxy and Interface Kinetics, Oiso, Japan (1983).Google Scholar
17. Dirks, A.G. and Leamy, H.J., Thin Solid Films, 47, 219(1977).Google Scholar
18. Pandya, D.K., Rastogi, A.C. and Chopra, K.L., J.Appl.Phys., 46, 2966(1975).Google Scholar
19. Drosd, R. and Washburn, J., J.Appl.Phys., 53, 397 (1982).Google Scholar
20. Kunii, Y., Tabe, M. and Kajiyama, K., J.Appl.Phys., 56, 279 (1984).Google Scholar