Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T08:16:31.215Z Has data issue: false hasContentIssue false

SOI-Based Silicon Quantum Dots Contacted by Self-Aligned Nano-Electrodes

Published online by Cambridge University Press:  01 February 2011

Conrad R. Wolf
Affiliation:
[email protected], Ulm University, Institute for Semiconductor Physics, Albert-Einstein-Allee 45, Ulm, 89081, Germany
Andreas Ladenburger
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rainer Enchelmaier
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Klaus Thonke
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Rolf Sauer
Affiliation:
[email protected], Universität Ulm, Institut für Halbleiterphysik, Ulm, 89069, Germany
Get access

Abstract

In this paper we present a novel approach to fabricate single-electron devices utilizing different self-organization and self-alignment effects. Silicon quantum dots (QDs) are obtained employing reactive ion etching (RIE) into a silicon-on-insulator (SOI) substrate with a self-assembled etch mask. Electrodes with nanometer separation are fabricated and aligned to the QDs by means of a controlled electromigration process. The tunneling rates of the devices are defined by the native oxide covering the silicon QDs and can be adjusted by self-limiting thermal oxidation. The devices show clear Coulomb blockade behavior as well as Coulomb staircase features. In some samples also a gate influence is present giving rise to Coulomb diamonds in the differential conductance diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Likharev, K. K., IBM J. Res. Develop. 32, 144 (1988).Google Scholar
2. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., and McEuen, P. L., Nature 389, 699 (1997).Google Scholar
3. Sato, T., Ahmed, H., Brown, D., and Johnson, B. F. G., J. Appl. Phys. 82, 696 (1997).Google Scholar
4. Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N., and Ralph, D.C., Appl. Phys. Lett. 84, 3154 (2004).Google Scholar
5. Stranski, I. N. and Krastanow, L., Monatshefte für Chemie - Chemical Monthly 71, 351 (1937).Google Scholar
6. Schmidt, K. H., Bock, C., Versen, M., Kunze, U., Reuter, D., and Wieck, A. D., J. Appl. Phys. 95, 5715 (2004).Google Scholar
7. Single, C., Zhou, F., Heidemeyer, H., Prins, F. E., Kern, D. P. and Plies, E., J. Vac. Sci. Technol. B 16, 3938 (1998).Google Scholar
8. Zhuang, L., Guo, L., and Chou, S. Y., Appl. Phys. Lett. 72, 1205 (1998).Google Scholar
9. Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
10. Chen, W., Ahmed, H., and Nakazoto, K., Appl. Phys. Lett. 66, 3383 (1995).Google Scholar
11. Dolan, G. J., Appl. Phys. Lett. 31, 337 (1977).Google Scholar
12. Umeno, A. and Hirakawa, K., Appl. Phys. Lett. 86, 143103 (2005).Google Scholar
13. Morpurgo, A. F., Marcus, C. M., and Robinson, D. B., Appl. Phys. Lett. 74, 2084 (1999).Google Scholar
14. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J., and McEuen, P. L., Appl. Phys. Lett. 75, 301 (1999).Google Scholar
15. Krupenin, V. A., Presnov, D. E., Zorin, A. B., and Niemeyer, J., J. Low Temp. Phys. 118, 287 (2000).Google Scholar
16. Esen, G. and Fuhrer, M. S., Appl. Phys. Lett. 87, 263101 (2005).Google Scholar