Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T08:19:53.665Z Has data issue: false hasContentIssue false

Sn-H Complex in Hydrogen Pass Ivated GaAs

Published online by Cambridge University Press:  25 February 2011

D. M. Kozuch
Affiliation:
Department of Physics and Sherman Fairchild Center, Lehigh University, Bethlehem, Pennsylvania 18015
Michael Stavola
Affiliation:
Department of Physics and Sherman Fairchild Center, Lehigh University, Bethlehem, Pennsylvania 18015
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. Lopata
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

It is confirmed that Sn donors in GaAs are passivated by exposure to a hydrogen plasma. The Sn-H complexes give rise to vibrational absorption bands at 1327.8 cm-1 and 967.7 cm-1 that are assigned to H-stretching and H-wagging modes respectively. A study of the thermal stability of the Sn-H complexes shows that they dissociate for annealing temperatures above ~150°C. The properties of the Sn-H complexes are compared to those of other donor-H complexes. Our results suggest a configuration for the complex with H at the antibonding site adjacent to the Sn.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pearton, S. J., Corbett, J. W., and Shi, T. S., Appl. Phys. A 43, 153 (1987).Google Scholar
2 Hydrogen in Semiconductors, edited by Pankove, J. I. and Johnson, N. M. (Academic Press, San Diego) to be published.Google Scholar
3 Pajot, B., this volume.Google Scholar
4 Johnson, N. M., Herring, C., and Chadi, D. J., Phys. Rev. Lett. 56, 769 (1986).Google Scholar
5 Bergman, K., Stavola, M., Pearton, S. J., and Lopata, J., Phys. Rev. B37, 2770 (1988).Google Scholar
6 Chang, K. J. and Chadi, D. J., Phys. Rev. Lett. 60, 1422 (1988).Google Scholar
7 Amore-Bonapasta, A., Lapiccirella, A., Tamassini, N., and Capizzi, M., Defects in Semiconductors 15, edited by Ferenczi, G., (Trans Tech, Switzerland, 1989) p. 1051.Google Scholar
8 Estreicher, S. K., Throckmorton, S. K., Marynick, D. S., Phys. Rev. B39, 13241 (1989).Google Scholar
9 Denteneer, P. J. H., Van deWalle, C. G., Pantelides, S. T., Phys. Rev. B, to be published.Google Scholar
10 DeLeo, G. G., BealI Fowler, W., Sudol, T. M., and O’Brien, K. J., Phys. Rev. B, to be published.Google Scholar
11 Pajot, B., Neman, R. C., Murray, R., Jalil, A., Chevallier, J., and Azoulay, R., Phys. Rev. B37, 4188 (1988).Google Scholar
12 Briddon, P. and Jones, R., in Shallow Impurities in Semiconductors 1988, edited by Monemar, B. (Inst. of Phys., Bristol, 1989) p. 459.Google Scholar
13 Muro, K. and Sievers, A. J., Phys. Rev. Lett. 57, 897 (1986).Google Scholar
14 Dautremont-Smith, W. C., Lopata, J., Pearton, S. J., Koszi, L. A., Stavola, M., and Swaminathan, V., J. Appl. Phys. 66, 1993 (1989).Google Scholar
15 Chevallier, J., Clerjaud, B., and Pajot, B., in Ref. 2.Google Scholar
16 Pearton, S. J., Dautremont-Smith, W. C., Chevallier, J., Tu, C. W., and Cummings, K. D., J. Appl. Phys. 59, 2821 (1986).Google Scholar
17 Hansen, W. L., Haller, E. E., and Luke, P. N., IEEE Trans. on Nuclear Science NS–29, 738 (1982).Google Scholar
18 Johnson, N. M., in the closing summary of the Workshop on Hydrogen Effects in InP and Related Compounds, Oct., 1989, Lannion, France.Google Scholar
19 Zundel, T. and Weber, J., Phys. Rev. B, to be published.Google Scholar
20 This appears to be true for many of the dopant-H complexes studied. See Stavola, M. and Pearton, S. J., in Ref. 2 and also the data in refs. 3 and 15.Google Scholar