Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T09:46:58.848Z Has data issue: false hasContentIssue false

Small Lead and Indium Inclusions in Aluminium

Published online by Cambridge University Press:  28 February 2011

E. Johnson
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
K. Hjemsted
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
B. Schmidt
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
K. K. Bourdelle
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
A. Johansen
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
H. H. Andersen
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
L. Sarholt-Kristensen
Affiliation:
Physics Laboratory, H.C. Ørsted Institute, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
Get access

Abstract

Ion implantation of lead or indium into aluminium results in spontaneous phase separation and formation of lead or indium precipitates. The precipitates grow in topotactical alignment with the matrix, giving TEM images characterized by moiré fringes. The size and density of the precipitates increase with increasing fluence until coalescence begins to occur. Implantations at elevated temperatures lead to formation of larger precipitates with well developed facets. This is particularly significant for implantations above the bulk melting point of the implanted species. Melting and solidification have been followed by in-situ TEM heating and cooling experiments. Superheating up to ∼ 50 K above the bulk melting point has been observed, and the largest inclusions melt first. Melting is associated with only partial loss of facetting of the largest inclusions. Initial growth of the inclusions occurs by trapping of atoms retained in supersaturated solution. Further growth occurs by coalescence of neighbouring inclusions in the liquid phase. Solidification is accompanied by a strong undercooling ∼ 30 K below the bulk melting point, where the smallest inclusions solidify first. Solidification is characterized by spontaneous restoration of the facets and the topotactical alignment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Saka, H., Nishikawa, Y. and Imura, T., Philos. Mag. A, 57 (1988) 895.Google Scholar
[2] Sasaki, K. and Saka, H., Philos. Mag. A, 63 (1991) 1207.CrossRefGoogle Scholar
[3] Kemerink, G.J., Pleiter, F. and Kruithof, G.H., Hyperfine Interac. 35 (1987) 619.CrossRefGoogle Scholar
[4] Gråbaek, L., Bohr, J., Johnson, E., Johansen, A., Sarholt-Kristensen, L. and Andersen, H.H., Phys. Rev. Lett. 64 (1990) 934.Google Scholar
[5] Johnson, E., Grabaek, L., Bohr, J., Johansen, A., Sarholt-Kristensen, L. and Andersen, H.H., Mat. Res. Soc. Symp. Proc, edited by Knapp, J.A., Børgesen, P. and Zuhr, R.A., (Materials Research Society, Pittsburgh PA, Vol. 157, 1990), p. 247.Google Scholar
[6] Graåbaek, L., Bohr, J., Andersen, H.H., Johansen, A., Johnson, E., Sarholt-Kristensen, L. and Robinson, I.K., Phys. Rev. B, (1992), in press.Google Scholar
[7] Moore, K.I., Chattopadhyay, K. and Cantor, B., Proc. Roy. soc. Lond. A, 414 (1987) 499.Google Scholar
[8] Moore, K.I., Zhang, D.L. and Cantor, B., Acta Metall. Mater. 38 (1990) 1327.Google Scholar
[9] Zhang, D.L. and Cantor, B., Philos. Mag. A, 62 (1990) 557.CrossRefGoogle Scholar
[10] Zhang, D.L., Chattopadhyay, K. and Cantor, B., J. Mater. Sci. 26 (1991) 1531.Google Scholar
[11] Horsewell, A., Philos. Mag. A, 62 (1990) 647.Google Scholar
[12] Thackery, P.A. and Nelson, R.S., Philos. Mag. 19 (1969) 169.CrossRefGoogle Scholar
[13] Nordling, C. and Österman, J., Physics Handbook, (Chartwell-Bratt Ltd. UK, 1987).Google Scholar
[14] Silcock, J.M., J. Inst. Metals, 84 (1955/56) 19.Google Scholar
[15] Bourdelle, K.K., Andersen, H.H., Johansen, A., Johnson, E., Sarholt-Kristensen, L., Steenstrup, S., Yu, L. and Bech Nielsen, B., Nucl. Instrum. Meth. (1992), in press.Google Scholar
[16] Templier, C., Garem, H. and Riviere, J.P., Philos. Mag. A, 53 (1986) 667.Google Scholar
[17] Kim, K.T. and Welsch, G., Mater. Lett. 9 (1990) 295.CrossRefGoogle Scholar
[18] Budai, J.D. and Aziz, M.J., Phys. Rev. B, 33 (1986) 2876.CrossRefGoogle Scholar