Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:43:39.368Z Has data issue: false hasContentIssue false

Small Atom Diffusion and Breakdown on Stokes-Einstein Relation in the Supercooled Liquid State of Zr-Ti-Cu-Ni-Be Alloys

Published online by Cambridge University Press:  10 February 2011

U. Geyer
Affiliation:
I. Phys. Institut and SFB 345, Universität Göttingen, 37073 Göttingen, Germany
S. Schneider
Affiliation:
I. Phys. Institut and SFB 345, Universität Göttingen, 37073 Göttingen, Germany
Y. Qiu
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
M.-P. Macht
Affiliation:
Hahn-Meitner-Institut Berlin, Abt. Strukturforschung, 14109 Berlin, Germany
T. A. Tombrello
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
W. L. Johnson
Affiliation:
California Institute of Technology, Pasadena, CA 91125, USA
Get access

Abstract

Be diffusivity data in the bulk metallic glass forming alloys Zr41.2Ti13.8Cu12.5Ni10Be22.5 and Zr46.7Ti8.3Cu7.5Ni10Be27.5 are reported for temperatures between 530K and 710K, extending up to 80K into the supercooled liquid states of the alloys. At the glass transition temperature, Tg, a change in temperature dependence of the data is observed in both alloys, and above Tg the diffusivity increases faster with temperature than below. The data in the supercooled liquid can be described by a modified Arrhenius expression containing the communal entropy of the supercooled liquid and based on a diffusion mechanism suggested earlier. The comparison with viscosity data in the supercooled liquid state of Zr46.7Ti8.3Cu7.5Ni10Be27.5 reveals a breakdown of the Stokes- Einstein relation, whereas D(T) and η(T) follow a relation close to van den Beu-kel's. The breakdown of the Stokes- Einstein relation indicates a cooperative diffusion mechanism in the supercooled liquid state of the ZrTiCuNiBe alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 177 (1990).Google Scholar
2 Inoue, A., Kato, A., Zhang, T., et al, Mater. Trans. JIM 32, 609 (1990).Google Scholar
3 Inoue, A., Nakamura, T., Sugita, T., et al, Mater. Trans. JIM 34, 351 (1993).Google Scholar
4 Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
5 Lin, X. H. and Johnson, W. L., J. Appl. Phys. 78, 6514 (1995).Google Scholar
6 Geyer, U., Schneider, S., Johnson, W. L., et al, Phys. Rev. Lett. 75, 2364 (1995).Google Scholar
7 Geyer, U., Schneider, S., Qiu, Y., et al., Mat. Science Forum, (in press) (1996).Google Scholar
8 Geyer, U., Schneider, S., Johnson, W. L., et al, Appl. Phys. Lett. 69, 2492 (1996).Google Scholar
9 Bakke, E., Busch, R., and Johnson, W. L., Appl. Phys. Lett. 67, 3260 (1995).Google Scholar
10 Kim, Y. J., Busch, R., Johnson, W. L., et al, Appl. Phys. Lett. 68, 1057 (1996).Google Scholar
11 Busch, R., Kim, Y. J., and Johnson, W. L., J. Appl. Phys. 77, 4093 (1995).Google Scholar
12 Schneider, S., Johnson, W. L., and Thiyagarajan, P., Appl. Phys. Lett. 68, 493 (1996).Google Scholar
13 Schneider, S., Geyer, U., Thiyagarajan, P., et al, Mat. Science Forum, in press (1997).Google Scholar
14 Qiu, Y., Geyer, U., Schneider, S., et al, Nucl. Instr. Meth. B 117, 151 (1996).Google Scholar
15 Budke, E., Fielitz, P., Macht, M.-P., et al, in Intl. Conf. on Diffusion in Materials - DIMAT 96, edited by Mehrer, H. (Transtec Publications Ltd., Nordkirchen, Germany, 1996), in press.Google Scholar
16 Nakajima, H., Sprengel, W., and Nonaka, K., in Intl. Conf. on Diffusion in Materials -DIMAT 96, edited by Mehrer, H. (Transtec Publications Ltd., Nordkirchen, Germany, 1996), in press.Google Scholar
17 Wenwer, F., Knorr, K., Macht, M.-P., et al, in Intl. Conf. on Diffusion in Materials -DIMAT 96, edited by Mehrer, H. (Transtec Publications Ltd., Nordkirchen, Germany, 1996), in press.Google Scholar
18 Einstein, A., Investigations on the theory of Brownian motion (Dover, New York, 1956).Google Scholar
19 Beukel, A. v. d., Scripta Metall. 22, 877 (1988).Google Scholar