No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Two first-step copper damascene slurries and one commercial second-step slurry are characterized in terms of their intrinsic properties and CMP performance. A prototype first-step slurry with high static etch rate (∼150 nm/min) yielded higher dishing in the copper lines (∼200 nm in 100 μm lines) compared to a commercial first-step slurry with negligible static etch rate. In both the cases, dishing in copper lines is observed to be a strong function of line width and radial position on the wafer. High static etch rate of the prototype slurry is believed to be responsible for the high dishing. Non-selective second-step polishing removes the liner layer while maintaining planarity.