Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:33:16.790Z Has data issue: false hasContentIssue false

Slow Dynamics and the Glass Transition in Confining Systems

Published online by Cambridge University Press:  01 February 2011

Li-Min Wang
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287–1604, U.S.A.
Fang He
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287–1604, U.S.A.
Ranko Richert
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287–1604, U.S.A.
Get access

Abstract

The slow dynamics associated with the structural relaxation of glass forming materials near the glass transition is very sensitive to the effects of small confining geometries. Based upon the experimental results of triplet state solvation dynamics, we explore the extent to which confinement effects can be rationalized solely in terms of interfacial dynamics which are modified relative to the bulk situation. The importance of the interfacial conditions is emphasized by observing the changes due to the surface chemistry, by comparing relaxation times at and further away from the surface, and by studying the effects of ‘soft’ versus ‘hard’ confining materials. While ‘hard’ confinement by porous solids is observed to result in slower dynamics and an increased glass transition temperature Tg for propylene glycol, our 4.6 nm nanodroplets suspended in a more fluid environment display faster structural relaxation, equivalent to a reduction of Tg as observed in free standing polymer films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horn, R. G. and Israelachvili, J. N., J. Chem. Phys. 75, 1400 (1981);Google Scholar
Israelachvili, J. N. and McGuiggan, P. M., Science 241, 795 (1988).Google Scholar
2. Van Alsten, J. and Granick, S., Phys. Rev. Lett. 61, 2570 (1988);Google Scholar
Granick, S., Science 253, 1374 (1991).Google Scholar
3. Gao, J., Luedtke, W. D. and Landman, U., J. Chem. Phys. 106, 4309 (1997).Google Scholar
4. Böhme, T. R. and de Pablo, J. J., J. Chem. Phys. 116, 9939 (2002).Google Scholar
5. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R. and Dutcher, J.R., Phys. Rev. Lett. 77, 2002 (1996).Google Scholar
6. Ellison, C. J. and Torkelson, J. M., Nature Materials 2, 695 (2003).Google Scholar
7. Huwe, A., Kremer, F., Behrens, P. and Schweiger, W., Phys. Rev. Lett. 82, 2338 (1999).Google Scholar
8. Drake, J. M. and Klafter, J., Physics Today 43, 46 (1990).Google Scholar
9. Zhang, J., Liu, G. and Jonas, J., J. Phys. Chem. 96, 3478 (1992).Google Scholar
10. Svanberg, C., Bergman, R., Jacobsson, P. and Börjesson, L., Phys. Rev. B 66, 054304 (2002).Google Scholar
11. McKenna, G. B., J. Phys. IV France 10, 53 (2000).Google Scholar
12. Ediger, M. D., Angell, C. A. and Nagel, S. R., J. Phys. Chem. 100, 13200 (1996).Google Scholar
13. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. and Martin, S. W., J. Appl. Phys. 88, 3113 (2000).Google Scholar
14. Ediger, M. D., Ann. Rev. Phys. Chem. 51, 99 (2000).Google Scholar
15. Richert, R., J. Phys.: Condens. Matter 14, R703 (2002).Google Scholar
16. Reinsberg, S. A., Qiu, X. H., Wilhelm, M., Spiess, H. W. and Ediger, M. D., J. Chem. Phys. 114, 7299 (2001).Google Scholar
17. Reinsberg, S. A., Heuer, A., Doliwa, B., Zimmermann, H. and Spiess, H. W., J. Non-Cryst. Solids 307–310, 208 (2002).Google Scholar
18. Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).Google Scholar
19. Molecular Dynamics in Restricted Geometries, edited by Drake, J. M. and Klafter, J. (Wiley, New York, 1989).Google Scholar
20. Warnock, J., Awschalom, D. D. and Shafer, M. W., Phys. Rev. B 34, 475 (1986).Google Scholar
21. Loughnane, B. J., Scodinu, A. and Fourkas, J. T., J. Phys. Chem. B 103, 6061 (1999).Google Scholar
22. Schüller, J., Mel'nichenko, Yu. B., Richert, R. and Fischer, E. W., Phys. Rev. Lett. 73, 2224 (1994).Google Scholar
23. Barut, G., Pissis, P., Pelster, R. and Nimtz, G., Phys. Rev. Lett. 80, 3543 (1998).Google Scholar
24. Wendt, H. and Richert, R., J. Phys.: Condens. Matter 11, A199 (1999).Google Scholar
25. Jackson, C. L. and McKenna, G. B., J. Non-Cryst. Solids 131–133, 221 (1991).Google Scholar
26. Dynamics in Small Confining Systems, edited by Drake, J. M., Klafter, J., Kopelman, R., and Awschalom, D. D., (Mater. Res. Soc. Proc. 290, Pittsburgh, PA, 1993).Google Scholar
27. Dynamics in Small Confining Systems II, edited by Drake, J. M., Klafter, J., Kopelman, R., and Trojan, S. M., (Mater. Res. Soc. Proc. 366, Pittsburgh, PA, 1995).Google Scholar
28. Dynamics in Small Confining Systems III, edited by Drake, J. M., Klafter, J., and Kopelman, R., (Mater. Res. Soc. Proc. 464, Pittsburgh, PA, 1997).Google Scholar
29. Dynamics in Small Confining Systems IV, edited by Drake, J. M., Grest, G. S., Klafter, J., and Kopelman, R., (Mater. Res. Soc. Proc. 543, Pittsburgh, PA, 1999).Google Scholar
30. Dynamics in Small Confining Systems V, edited by Drake, J. M., Klafter, J., Levitz, P., Overney, R. M. and Urbakh, M., (Mater. Res. Soc. Proc. 651, Pittsburgh, PA, 2001).Google Scholar
31. Richert, R., Chem. Phys. Lett. 171, 222 (1990).Google Scholar
32. Richert, R., J. Chem. Phys. 113, 8404 (2000).Google Scholar
33. Berg, M., Chem. Phys. Lett. 228, 317 (1994).Google Scholar
34. Wendt, H. and Richert, R., J. Phys. Chem. A 102, 5775 (1998).Google Scholar
35. Maroncelli, M. and Fleming, G. R., J. Chem. Phys. 86, 6221 (1987).Google Scholar
36. Streck, C., Mel'nichenko, Yu. B. and Richert, R., Phys. Rev. B 53, 5341 (1996).Google Scholar
37. Angell, C. A., Kadiyala, R. K. and MacFarlane, D. R., J. Phys. Chem. 88, 4593 (1984).Google Scholar
38. Dubochet, J., Adrian, M., Teixeira, J., Alba, C. M., Kadiyala, R. K., MacFarlane, D. R. and Angell, C. A., J. Phys. Chem. 88, 6727 (1984).Google Scholar
39. Alba-Simionesco, C., Teixeira, J. and Angell, C. A., J. Chem. Phys. 91, 395 (1989).Google Scholar
40. Green, J. L., J. Phys. Chem. 94, 5647 (1990).Google Scholar
41. Richert, R., Phys. Rev. B 54, 15762 (1996).Google Scholar
42. Donati, C. and Jäckle, J., J. Phys.: Condens. Matter 8 2733 (1996).Google Scholar
43. Richert, R. and Yang, M., J. Phys. Chem. B 107, 895 (2003).Google Scholar
44. Scheidler, P., Kob, W. and Binder, K., Europhys. Lett. 52, 277 (2000).Google Scholar
45. Mel'nichenko, Yu. B., Schüller, J., Richert, R., Ewen, B. and Loong, C.-K., J. Chem. Phys. 103, 2016 (1995).Google Scholar
46. Huwe, A., Arndt, M., Kremer, F., Haggenmüller, C. and Behrens, P., J. Chem. Phys. 107, 9699 (1997).Google Scholar
47. Gorbatschow, W., Arndt, M., Stannarius, R. and Kremer, F., Europhys. Lett. 35, 719 (1996).Google Scholar
48. Carini, G., Crupi, V., D'Angelo, G., Majolino, D., Migliardo, P. and Mel'nichenko, Yu. B., J. Chem. Phys. 107, 2292 (1997).Google Scholar
49. Loughnane, B. J., Farrer, R. A., Scodinu, A., Reilly, T. and Fourkas, J. T., J. Phys. Chem. B 104, 5421 (2000).Google Scholar
50. Riter, R. E., Undiks, E. P., Kimmel, J. R. and Levinger, N. E., J. Phys. Chem. B 102, 7931 (1998).Google Scholar
51. Willard, D. M., Riter, R. E. and Levinger, N. E., J. Am. Chem. Soc. 120, 4151 (1998).Google Scholar
52. Wang, L.-M., He, F. and Richert, R., Phys. Rev. Lett. (submitted).Google Scholar
53. Kotlarchyk, M., Chen, S.-H., Huang, J. S. and Kim, M. W., Phys. Rev. Lett. 53, 941 (1984).Google Scholar
54. Yang, M. and Richert, R., Chem. Phys. 284, 103 (2002).Google Scholar