Article contents
Slow Degradation of Hydrogenated Amorphous Silicon Photoconductivity Under Pulsed Illumination
Published online by Cambridge University Press: 15 February 2011
Abstract
We degraded hydrogenated amorphous silicon (a-Si:H) using red light pulses of 32 microseconds to 2 milliseconds. These metastable photoconductivity degradations were compared to degradation with continuous light of the same intensity and same exposure time. For a given integrated exposure time we observe higher degraded photoconductivities (by up to 40 %) as we shorten the pulses. For example, to obtain the same amount of degradation with 120 microsecond pulses as with continuous illumination, the integrated sample exposure time must be doubled. Experiments were conducted to exclude thermal effects. Our result cannot be explained with a simple recombination-driven degradation mechanism, because electron and hole populations rise and fall to steady-state values in only a few microseconds. We conclude that carrier recombination creates a more proximate precursor to metastable degradation of a-Si:H. When illumination begins, this precursor's density rises more slowly than the density of photocarriers and therefore degradation is delayed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 2
- Cited by