No CrossRef data available.
Article contents
Sizing Requirements for Flow-Through Geochemical Tests: Theoretical Considerations and Model Results
Published online by Cambridge University Press: 21 February 2011
Abstract
A methodology for evaluating test apparatus size requirements has been applied to the sizing of flow-through tests used in the evaluation of coupled reaction and transport processes. The results of the sizing evaluation constrain the apparatus dimensions and test conditions capable of yielding results representative of the processes of interest.
The size requirements of flow-through tests involving a system of simplified granite and groundwater were determined in order to demonstrate the feasibility and implications of sizing evaluations. Reaction path simulations were performed using the E03/6 codes at temperatures of 25°C, 100°C, and 200°C. The determination of reaction path as a function of time was then used to obtain minimum column residence time requirements. Simulation results indicate that column lengths required for development of quasistatic equilibrium reaction zones at 200°C are three times smaller than at 100°C, and over 36 times smaller than at 25°C.
A range of possible combinations of column dimensions and flow rates for a set of model test conditions exist for a given residence time. The most appropriate combinations depend on the purpose of the test, the process of interest, and factors such as test duration, sampling requirements, and engineering limitations. Size and scale evaluations thus provide a technical basis for the design and construction of flow-through tests, and have profound implications for the interpretation of test results.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1990