Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T04:44:40.976Z Has data issue: false hasContentIssue false

Size-Controlled Silicon Quantum Dots Superlattice for Thin-Film Solar Cell Applications

Published online by Cambridge University Press:  01 February 2011

Yasuyoshi Kurokawa
Affiliation:
[email protected], Tokyo Institute of Technology, Dept. of Physical Electronics, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan, +81-3-5734-2662, +81-3-5734-2897
Shinsuke Miyajima
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Akira Yamada
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Makoto Konagai
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physical Electronics, 2-12-1-S9-9, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
Get access

Abstract

We prepared size-controlled silicon quantum dots superlattices (Si-QDSLs) by thermal annealing of stoichiometric hydrogenated amorphous silicon carbide (a-SiC:H)/silicon rich hydrogenated amorphous silicon carbide (a-Si1+xC:H) multilayers for thin-film solar cell applications. Transmission electron microscope (TEM) observation revealed that the size of silicon quantum dots can be controlled by the thickness of the a-Si1+xC:H layers. It was found that hydrogen plasma treatment (HPT) significantly enhanced the photoluminescence (PL) of the Si-QDSLs. From the results of the PL measurement, the bandgap of the Si-QDSLs can be controlled from 1.1 eV to 1.6 eV by varying the diameter of silicon quantum dots. ESR measurement indicated that HPT reduced the defect density in a Si-QDSL from 1.83 ×1019 to 1.67 sup1018 cm-3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Conibeer, G. Green, M. A. Corkish, R. Cho, Y.-H, Cho, E.-C, Jiang, C.-W, Fangsuwannarak, T. Pink, E. Huang, Y. Puzzer, T. Trupke, T. Richards, B. Shalav, A. and Lin, K.-L., Thin Solid Films 511, 654 (2006).Google Scholar
2 Beard, M. C. Knutsen, K. P. Yu, P. Luther, J. M. Song, Q. Metzger, W. K. Ellingson, R. J. and Nozik, A. J. Nano Letters 7, 2506 (2007).Google Scholar
3 Green, M. A. Tech. Dig. of the 15th International Photovoltaic Science and Engineering Conference, (Shanghai, 2005), p. 7.Google Scholar
4 Hanna, M. C. and Nozik, A. J. J. Appl. Phys. 100, 074510 (2006).Google Scholar
5 Zacharias, M. Heitmann, J. Scholz, R. Kahler, U. Schmidt, M. and Bläsing, J., Appl. Phys. Lett. 80, 661 (2002).10.1063/1.1433906Google Scholar
6 Kurokawa, Y. Miyajima, S. Yamada, Y. and Konagai, M.: Jpn. J. Appl. Phys. 45, L1064 (2006).Google Scholar
7 Song, D. Cho, E.-C., Cho, Y.-H., Conibeer, G. Huang, Y. Huang, S. and Green, M. A. Thin Solid Films 516, 3824 (2008).10.1016/j.tsf.2007.06.150Google Scholar
8 Jiang, C. and Green, M. A. J. Appl. Phys. 99, 114902 (2006).Google Scholar
9 Kurokawa, Y. Tomita, S. Miyajima, S. Yamada, Y. and Konagai, M. Jpn. J. Appl. Phys. 46, L833 (2007).Google Scholar
10 Zhang, L. Chen, K. Wang, L. Li, W. Xu, J. Huang, X. and Chen, K. J. Phys.: Condens. Matter 14, 10083 (2002).Google Scholar
11 Campbell, I. H. and Fauchet, P. M. Solid State Commun. 58, 739 (1986).Google Scholar
12 Éfros, Al. L. and Éfros, A. L., Sov. Phys. Semicond. 16, 772 (1981).Google Scholar
13 Brus, L. E. J. Lumin. 31, 381 (1984).Google Scholar
14 Kayanuma, Y. Phys. Rev. B 38, 9797 (1988).Google Scholar
15 Shiba, K. Nakagawa, K. Ikeda, M. Kohno, A. Miyazaki, S. and Hirose, M. Jpn. J. Appl. Phys. 36, L1279 (1997).Google Scholar
16 Garrido, B. López, M., González, O., Pérez-Rodríguez, A., and Morante, J. R. Appl. Phys. Lett., 77, 3143 (2000).Google Scholar
17 Trwoga, P. F. Kenyon, A. J. and Pitt, C. W. J. Appl. Phys. 83, 3789 (1998).Google Scholar
18 Wieringen, A. Van, and Warmholtz, N. Physica 22, 849 (1956).10.1016/S0031-8914(56)90039-8Google Scholar
19 Schmidt, H. Borchardt, G. Geckle, U. Bruns, M. and Baumann, H. J. Phys.: Condens. Matter 18, 5363 (2006).Google Scholar