Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T11:49:31.299Z Has data issue: false hasContentIssue false

Size, Stability and Chemistry of Nanomaterials and their Precursors by Mass Spectrometry Techniques

Published online by Cambridge University Press:  31 January 2011

Jean Jacques Gaumet
Affiliation:
[email protected], Université Paul Verlaine - Metz, LSMCL, Chemistry Department, Metz, France
Didier Arl
Affiliation:
[email protected], Université Paul Verlaine - Metz, LSMCL, Chemistry Department, Metz, France
Stéphane Dalmasso
Affiliation:
[email protected], Université Paul Verlaine - Metz, LPMD, Physics Department, Metz, France
Frédéric Aubriet
Affiliation:
[email protected], Université Paul Verlaine - Metz, LSMCL, Chemistry Department, Metz, France
Jean-Pierre Laurenti
Affiliation:
[email protected], Université Paul Verlaine - Metz, LPMD, Physics Department, Metz, France
Get access

Abstract

Soft ionization mass spectrometry (MS) methods [Electro-Spray Ionisation - Fourier Transform Ion Cyclotronic Resonance MS (ESI-FTICRMS) and Matrix Assisted Laser Desorption Ionization coupled with Time of Flight MS (MALDI-TOFMS)] and associated fragmentation techniques appear to be an alternative way providing data on the size, stability and exact chemical composition of nanoparticles and their precursors, and potentially on interactions between particles. We report the application of both mass spectrometry techniques to analyze II-VI semiconductor nanomaterials (CdX with X = S or Se) and their organometallic precursors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vossmeyer, T., Katsikas, L., Giersig, M. and Popovic, I.G., J. Phys. Chem. 9, 7665 (1994).Google Scholar
2. Cumberland, S.L., Hanif, K.M., Javier, A., Khitrov, G., Strouse, G.F., Woessner, S.M. and Yun, C.S., Chem. Mater. 14, 1576 (2002).Google Scholar
3. Alivisatos, A.P., J. Phys. Chem. B 100, 13226 (1996).Google Scholar
4. Mohamed, M.B., Tonti, D., A. Al-Salman, Chemseddine, A. and Chergui, M., J. Phys. Chem. B 109, 10533 (2005).Google Scholar
5. Johnson, B.F.G. and Indae, J.S. Mc, Coordination Chemistry Reviews 115, 8706 (2000).Google Scholar
6. Löver, T., Henderson, W., Bowmaker, G.A., Seakins, J.M. and Cooney, R.P., Inorg. Chem. 36, 3711 (1997).Google Scholar
7. Gaumet, J.J., Khitrov, G.A. and Strouse, G.F., Nanoletters 2, 375 (2002).Google Scholar
8. Gaumet, J.J., Khitrov, G.A. and Strouse, G.F., Mat. Sci. Engineering C, 19, 299 (2002).Google Scholar
9. Dance, I.G., Choy, A. and Scudder, M.L., J. Am. Chem. Soc., 106, 6285 (1984).Google Scholar
10. Arl, D., Aubriet, F. and Gaumet, J.J., J. Mass Spectrom. in press (2009).Google Scholar
11. Khitrov, G.A. and Strouse, G.F., J. Am. Chem. Soc., 125, 10465 (2003).Google Scholar
12. Inoue, H., Ichiroku, N., Torimoto, T., Sakata, T., Mori, H. and Yoneyama, H., Langmuir, 10, 4517 (1994).Google Scholar