Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:45:22.173Z Has data issue: false hasContentIssue false

Size, Shape, and Crystallinity of Luminescent Structures in Oxidized Si Nanoclusters and H-Passivated Porous Si

Published online by Cambridge University Press:  28 February 2011

S. Schuppler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. L. Friedman
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. A. Marcus
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D.L. Adler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Y.-H. Xie
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. M. Ross
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, CA 94720
T. D. Harris
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W.L. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Y. J. Chabal
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P. J. Szajowski
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
E. E. Chaban
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. E. Brus
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P. H. Citrin
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Near-edge and extended x-ray absorption fine structure measurements from a wide variety of H-passivated porous Si samples and oxidized Si nanocrystals, combined with electron microscopy, ir-absorption, α-recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the luminescence observed in these systems. For luminescent porous Si samples peaking in the visible region, i. e., ≤700nm, their mass-weighted-average structures are determined here to be particles–not wires, whose short-range character is crystalline – not amorphous, and whose dimensions – typically <15 Å – are significantly smaller than previously reported or proposed. These results depend only on sample luminescence behavior, not on sample preparation details, and thus have general implications in describing the mechanism responsible for visible luminescence in porous silicon. New results are also presented which demonstrate that the observed luminescence is unrelated to either the photo-oxidized Si species in porous Si or the interfacial suboxide species in the Si nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 For example, see (a) Mater. Res. Soc. Proc. 256 (1992); (b) ibid. 283 (1993); (c) ibid. 298 (1993).Google Scholar
2 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
3 Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
4 Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Harris, T. D., Brown, W. L., Chabal, Y. J., Brus, L. E., and Citrin, P. H., Phys. Rev. Lett. 72, 2648 (1994).Google Scholar
5 MacDowell, A. A., Hashizume, T., and Citrin, P. H., Rev. Sci. Instr. 60, 1901 (1989).Google Scholar
6 Preparations of the por-Si samples studied here (referred to as A, B, C, and D) follow those in Refs. 2, 7, and 8, namely, C [2]: p-type Si(100), >50 Ω-cm, 20%HF in alcohol, 20 mA/cm2 for 5 min; A [8]; same as C, but etched 60 min; B [7]: p-type Si(100), >50 Ω-cm, 15%HF in alcohol, 25 mA/cm2 for 12 min; D[8]: p-type Si(100), 0.5-0.8 Ω-cm, 40% HF in alcohol, 50 mA/cm2 for 80 sec, soaked 2 hr unetched in same solution.50+Ω-cm,+20%HF+in+alcohol,+20+mA/cm2+for+5+min;+A+[8];+same+as+C,+but+etched+60+min;+B+[7]:+p-type+Si(100),+>50+Ω-cm,+15%HF+in+alcohol,+25+mA/cm2+for+12+min;+D[8]:+p-type+Si(100),+0.5-0.8+Ω-cm,+40%+HF+in+alcohol,+50+mA/cm2+for+80+sec,+soaked+2+hr+unetched+in+same+solution.>Google Scholar
7 Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Harris, T. D., and Citrin, P. H., Appl. Phys. Lett. 62, 1934 (1993).Google Scholar
8 Xie, Y. H., Hybertsen, M. S., Wilson, W. L., Ipri, S. A., Carver, G. E., Brown, W. L., Dons, E., Weir, B. E., R.Kortan, A., Watson, G. P., and Liddle, A. J., Phys. Rev. B 49, 5386 (1994); Y.-H. Xie (unpublished).Google Scholar
9 Oxidized Si nanocrystals were made by homogeneous nucleation in high-pressure He at 1000°C from thermal decomposition of disilane with subsequent oxidation in 02 at 1000°C for -30 msec. See Littau, K. A., Szajowski, P. J., Muller, A. J., Kortan, A. R., and Brus, L. E., J. Phys. Chem. 97, 122 (1993); W. L. Wilson, P. J. Szajowski, and L. E. Brus, Science 262,1242 (1993); P. J. Szajowski and L. E. Brus (unpublished).Google Scholar
10 Brus, L. E., Szajowski, P. F., Wilson, W. L., Harris, T. D., Schuppler, S., and Citrin, P. H., J. Amer. Chem. Soc. (to be published).Google Scholar
11 This por-Si sample more closely approximates the Si core because it contains less long- range order than c-Si. The results are completely unaffected by this choice because only difference spectra are being compared.Google Scholar
12 Lee, P. A., Citrin, P. H., Eisenberger, P., and Kincaid, B. M., Rev. Mod. Phys. 53, 769 (1981).Google Scholar
13 Street, R. A., Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).Google Scholar
14 Cohen, B. L., Fink, C. L., and Degnan, J. H., J. Appl. Phys. 43, 19 (1972).Google Scholar
15 The volumes used for integrating the measured SiHx concentrations in the por-Si samples were obtained from TEM.Google Scholar
16 Surface sensitivity of <1um was obtained using a grazing internal incidence angle in a Ge plate positioned next to the por-Si samples.Google Scholar
17 For a Si cube of side L, NSi = 8L3/a0 3 for a sphere of diameter L, NSi sph = (π/6)NSi cube.Google Scholar
18 See, e. g., Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993), and references therein.Google Scholar