Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:33:25.506Z Has data issue: false hasContentIssue false

Size Scaling in the Self-Immortalization of Superdislocations in the L12 Compounds Displaying the Yield Strength Anomaly

Published online by Cambridge University Press:  10 February 2011

D. C. Chrzan
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, [email protected]
M. D. Uchic
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-7817
W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

A simple statistical analysis of the distribution of superkinks along a single superdislocation is presented. This analysis is then used to estimate the rate of self-immobilization of superdislocations. The self-immobilization rate decreases exponentially with increasing superdislocation length. The implications for experiment are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mills, M. J., Baluc, N. and Karnthaler, H. P. in High Temperature Ordered Intermetallics III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S. and Koch, C. (Mater. Res. Soc. Proc., Pittsburgh PA 1989), 203.Google Scholar
2. Hirsch, B., Phil. Mag. A 65, 569 (1992).CrossRefGoogle Scholar
3. Mills, M. J. and Chrzan, D. C., Acta metall. mater. 40, 3051 (1992).CrossRefGoogle Scholar
4. Chrzan, C. and Mills, M. J., Mater. Sci. and Eng. A 164, 82 (1993); Phys. Rev. B 50, 30 (1994); in Dislocations in Solids 10, edited by F. R. N. Nabarro and M. S. Duesbery (Amsterdam, North Holland), 187.CrossRefGoogle Scholar
5. Devincre, Veyssi~re, P., Kubin, L. P and Saada, G., Phil. Mag. A 75, 1263 (1997).Google Scholar
6. Caillard, D., Couret, A. and Molenat, G., Mater. Sci. and Eng. A 164, 69 (1993).CrossRefGoogle Scholar
7. Couret, A., Sun, Y. Q. and Hirsch, P. B., Phil. Mag. A 67, 29 (1993).CrossRefGoogle Scholar
8. Louchet, , J. Phys. III 5, 1803 (1995); Mater. Sci. and Eng. A234–236, 275 (1997).Google Scholar
9. Chrzan, D. C. and Daw, M. S., Phys. Rev. B 55, 798 (1997).CrossRefGoogle Scholar
10. Chrzan, D. C., Uchic, M. D. and Nix, W. D., Phil. Mag. A, to be published.Google Scholar
11. Schulson, E. M., Weihs, T.P., Viens, D. V. and Baker, I., Acta metall. 33, 1587 (1985).CrossRefGoogle Scholar
12. Weihs, P., Zinoviev, V., Viens, D. V. and Schulson, E. M., Acta metall. 35, 1109 (1987).CrossRefGoogle Scholar