Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:38:17.044Z Has data issue: false hasContentIssue false

Size Effect in the Shear-Coupled Migration of Grain Boundaries Pinned by Triple Junctions

Published online by Cambridge University Press:  31 January 2011

Javier Gil Sevillano
Affiliation:
[email protected], CEIT and TECNUN, University of Navarra, Materials Engineering, San Sebastián, Spain
Aitor Luque
Affiliation:
[email protected], CEIT and TECNUN, University of Navarra, Materials Engineering, San Sebastián, Spain
Javier Aldazabal
Affiliation:
[email protected], CEIT and TECNUN, University of Navarra, Materials Engineering, San Sebastián, Spain
José Manuel Martinez-Esnaola
Affiliation:
[email protected], CEIT and TECNUN, University of Navarra, Materials Engineering, San Sebastián, Spain
Get access

Abstract

This paper presents molecular dynamics simulations of shear-coupled migration of tilt boundaries pinned by triple junctions in a simple model structure of columnar grains of different sizes. Simulations are for copper at 300 K. The phenomenon is of interest as a possible explanation of the Hall-Petch relationship breakdown in nano-grained polycrystals deformed at high or moderate strain rate and low-temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Washburn, J., Parquer, E.R., J. Metals-AIME Trans. 4 (1952) p. 1076.Google Scholar
2 Li, C.H., Edwards, E.H., Washburn, J., Parker, E.R., Acta Metall. 1 (1953) p. 223.Google Scholar
3 McLean, D., Nature 172 (1953) p. 300.Google Scholar
4 Khayutin, S.G., Phys. Met. Metallogr. 37 (1974) p. 161.Google Scholar
5 Guillopé, M., Poirier, J.P., Acta Metall. 28 (1980) p. 163.Google Scholar
6 Means, W.D., Jessell, M.W., Tectonophysics 127 (1986) p. 67.Google Scholar
7 Jessell, M.W., J. Struct. Geology 8 (1986) p. 527.Google Scholar
8 Winning, M., Gottstein, G., Shvindlerman, L.S., Acta Mater. 49 (2001) p. 211.Google Scholar
9 Winning, M., Gottstein, G., Shvindlerman, L.S., Acta Mater. 50 (2002) p. 353.Google Scholar
10 Winning, M., Acta Mater. 51 (2003) p. 6465.Google Scholar
11 Zaefferer, S., J.C. Kuo, Zhao, Z., Winning, M., Raabe, D., Acta Mater. 51 (2003) p. 4719.Google Scholar
12 Cahn, J.W., Taylor, J. E., Acta Mater. 52 (2004) p. 4887.Google Scholar
13 Sansoz, F., Molinari, J.F., Acta Mater. 53 (2005) p. 1931.Google Scholar
14 Winning, M., Rollett, A.D., Acta Mater. 53 (2005) p. 2901.Google Scholar
15 Cahn, J.W., Mishin, Y., Suzuki, A., Acta Mater. 54 (2006) p. 4953.Google Scholar
16 Cahn, J.W., Mishin, Y., Suzuki, A., Philos. Mag. 86 (2006) p. 3965.Google Scholar
17 Mishin, Y., Suzuki, A., Uberuaga, B.P., Voter, A.F., Phys. Review B 75 (2007) p. 22401.Google Scholar
18 Badirujjaman, S., Li, X.W., Winning, M., Mater. Sci. Eng. A 448 (2007) p. 442.Google Scholar
19 Ivanov, V.A., Mishin, Y., Phys. Review B 78 (2008) p. 064106.Google Scholar
20 Zhang, H., Dhu, D., Srolovitz, D.J., Philos. Mag. 88 (2008) p. 243.Google Scholar
21 Gorkaya, T., Molodov, D.A., Gottstein, G., Acta Mater. 57 (2009) p. 5396.Google Scholar
22 Luque, A., Aldazabal, J., Martínez-Esnaola, J.M., J Gil, Sevillano, Phys. Status Solidi C 6 (2009) p. 2107.Google Scholar
23 Luque, A., Aldazabal, J., Martínez-Esnaola, J.M., Gilsevillano, J., Philos. Mag. 2009 (in press).Google Scholar
24 Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D., Phys. Rev. B 63 (2001) p. 224106/1.Google Scholar
25 Li, J., Model. Simul. Mater. Sci. Eng. 11 (2003) p. 173.Google Scholar
26 Hansen, N., Adv. Eng. Mater. 7 (2005) p. 815.Google Scholar
27 Roundy, D., Krenn, C. R., Cohen, M. L., Morris, J. W. Jr. , Phys. Rev. Letters 82 (1999) p. 2713.Google Scholar
28 Krenn, C. R., Roundy, D., Morris, J. W. Jr. , Cohen, M. L., Mater. Sci. Eng. A317 (2001) p. 44.Google Scholar