Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T10:25:03.405Z Has data issue: false hasContentIssue false

Size distribution of self assembled Ge nanocrystals determined by photoluminescence

Published online by Cambridge University Press:  01 February 2011

Nelson Rowell
Affiliation:
[email protected], NRC Canada, Ottawa, Canada
David Lockwood
Affiliation:
[email protected], NRC Canada, Ottawa, Canada
Isabelle Berbezier
Affiliation:
[email protected], Institut Matériaux Microélectronique Nanosciences de Provence, Marseille, France
Pierre David Szkutnik
Affiliation:
[email protected], Institut Matériaux Microélectronique Nanosciences de Provence, Marseille, France
Antoine Ronda
Affiliation:
[email protected], Institut Matériaux Microélectronique Nanosciences de Provence, Marseille, France
Get access

Abstract

Germanium nanocrystals (NCs) were formed by in-situ thermal annealing of an amorphous Ge layer deposited by molecular beam epitaxy on a thin SiO2 layer on Si(001). The Ge NCs were then capped in situ with a thin layer of amorphous Si to prevent oxidation. For the present range of particle sizes (2.5 to 60 nm), the NC photoluminescence (PL) appeared primarily as a wide near-infrared band peaked near 800 meV. The peak energy of the PL band reflects the average NC size and its shape depends on the NC size distribution. Using both the k·p and tight binding theoretical models, we have analyzed the PL spectrum in terms of the NC size distribution required to reproduce the observed asymmetric band shape, which includes, for the smaller diameter NCs, a band gap enlargement due to quantum confinement. The observed size distribution determined from transmission electron microscopy analysis allowed the determination of the nonlinear increase in the PL quantum efficiency with decreasing NC diameter. This implies that, given a good theoretical description of the system, it is possible to evaluate the size distribution of semiconductor NCs from their PL energy dependence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Noël, J.-P., Rowell, N. L., Houghton, D.C., Perovic, D.D., Appl. Phys. Lett. 57, 1037 (1990).Google Scholar
3. Rowell, N.L., Noël, J.-P., Houghton, D.C., Buchanan, M., Appl. Phys. Lett. 58, 957 (1991).Google Scholar
4. Tang, Y.S., Sotomayor Torres, C.M., Ni, W.-X., Hansson, G.V., Superlattices and Microstructures 20, 505 (1996).Google Scholar
5. Fukatsu, S., Sunamura, H., Shiraki, Y., Komiyama, S., Thin Solid Films 321, 65 (1998).Google Scholar
6. Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCaffrey, J.P., Lockwood, D.J., Appl. Phys. Lett. 72, 43 (1998).Google Scholar
7. Eberl, K., Schmidt, O.G., Kienzle, O., Ernst, F., Thin Solid Films 373, 164 (2000).Google Scholar
8. Lobanov, D.N., Novikov, A.V., Vostokov, N.V., Drozdov, Y.N., Yablonskiy, A.N., Krasilnik, Z.F., Stoffel, M., Denker, U., Schmidt, O.G., Optical Materials 27, 818 (2005).Google Scholar
9. Baribeau, J.-M., Wu, X., Rowell, N.L., Lockwood, D.J., J. Phys.: Condens. Matter 18, R139 (2006).Google Scholar
10. Karmous, A., Berbezier, I., Ronda, A., Phys. Rev. B 73, 075323 (2006).Google Scholar
11. Nayfeh, M.H., Rao, S., Barry, N., Therrien, J., Belomoin, G., Smith, A., Chaieb, S., Appl. Phys. Lett. 80, 121 (2002).Google Scholar
12. Tsybeskov, L., Grom, G.F., Krishnan, R., Montes, L., Fauchet, P.M., Kovalev, D., Diener, J., Timoshenko, V., Koch, F., McCaffrey, J.P., Baribeau, J.-M., Sproule, G.I., Lockwood, D.J., Niquet, Y.M., Delerue, C. and Allan, G., EuroPhys. Lett. 55, 552 (2001).Google Scholar
13. Wan, Q., Wang, T.H., Zhu, M., Lin, C.L., Appl. Phys. Lett. 81, 538 (2002).Google Scholar
14. Kamenev, B.V., Grom, G.F., Lockwood, D.J., McCaffrey, J.P., Laikhtman, B. and Tsybeskov, L., Phys. Rev. B 69, 235306 (2004).Google Scholar
15. King, Y. C., King, T.-J., Hu, C., IEEE Trans. Electron Devices 48, 696 (2001).Google Scholar
16. Delerue, C., Allan, G., Lannoo, M., Phys. Rev. B 48, 11024 (1993).Google Scholar
17. Efros, A.L., Rosen, M., Annu. Rev. Mater. Sci. 30, 475 (2000).Google Scholar
18. Ledoux, G., Gong, J., Huiskena, F., Guillois, O., Reynaud, C., Appl. Phys. Lett. 80, 4834 (2002).Google Scholar
19. Biteen, J.S., Lewis, N.S., Atwater, H.A., Polman, A., Appl Phys. Lett. 84, 5389 (2004).Google Scholar
20. Niquet, Y. M., Allan, G., Delerue, C., Lannoo, M., Appl. Phys. Lett. 77, 1182 (2000).Google Scholar
21. Takeoka, S., Fujii, M., Hayashi, S., Yamamoto, K., Phys. Rev. B 58, 7921 (1998).Google Scholar
22. Berbezier, I., Karmous, A., Ronda, A., Sgarlata, A., Balzarotti, A., Castrucci, P., Scarselli, M., De Crescenzi, M., Appl. Phys. Lett. 89, 063122 (2006).Google Scholar
23. Szkutnik, P.D., Sgarlata, A., Motta, N., Placidi, E., Berbezier, I., Balzarotti, A., Surf. Sci. 601, 2778 (2007).Google Scholar
24. Karmous, A., Berbezier, I., Ronda, A., Hull, R., Graham, J., Surf. Sci. 601, 2769 (2007).Google Scholar
25. Rowell, N.L., Lockwood, D.J., Karmous, A., Szkutnik, P. D., Ayoub, J.-P., Berbezier, I., and Ronda, A., Superlattices and Microstructures 44, 305 (2008).Google Scholar
26. Rowell, N.L., SPIE Proc. 822, 161 (1987).Google Scholar
27. Baribeau, J.-M., Rowell, N.L., and Lockwood, D.J., “Self-Assembled Si1-xGex Dots and Islands”, Chapter 1 of “Self-Organized Nanoscale Materials”, Ed.: Hidachi, M. and Lockwood, D.J., Springer, New York (2006).Google Scholar
28. Lu, Z.H., Baribeau, J.-M., Lockwood, D.J., Buchanan, M., Tit, N., Dharma-wardana, C. and Aers, G.C., “Novel Si Structures for Photonic Applications,” Applications of Photonic Technology 3 (Lampropoulos, G.A. and Lessard, R.A., Eds.), SPIE Proc. 3491, 457 (1998).Google Scholar